本文中我们比较了Climate Forecast System Reanalysis(CFSR)高分辨率的再分析数据集和低分辨率的Japanese 25-year Reanalysis Project(JRA25)再分析数据集在向下短波辐射、向下长波辐射、10 m风场、近地面气温、降水、湿度上的不同,发现二者差异最大的为降水数据,其次为向下短波辐射数据、向下长波辐射数据。用这两个数据集驱动同一冰海耦合模式,CFSR强迫的海冰、北冰洋中层水和加拿大海盆温盐结构与实测相比有很大差距,等密度面上的地转流速在加拿大海盆和欧亚海盆比JRA25强迫的结果高20%,同时等密度面的深度偏深、位温偏高,在弗拉姆海峡的流通量也比海洋再分析数据Simple Ocean Data Assimilation(SODA)偏多。CFSR的向下辐射数据更加接近实测,采用此数据的敏感性实验模拟结果与实测符合的更好。对于海冰的模拟,云量起着至关重要的作用,降水带来的淡水通量通过影响大西洋入流水携带的热量进而影响到冰区。此外,CFSR过量的降水也是二者对于北冰洋温盐结构、弗拉姆海峡流通量以及地转流强度模拟产生偏差的主要原因。尽管风场的分辨率不同,在海盆尺度上对于海冰和海水温盐结构的影响并不大
References
[1]
Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic sea ice extents, areas, and trends, 1978—1996[J]. Journal of Geophysical Research: Oceans(1978—2012), 1999, 104(C9): 20837-20856.
[2]
Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293): 1334-1337.
[3]
Serreze M C, Francis J A. The Arctic amplification debate[J]. Climatic Change, 2006, 76(3/4): 241-264.
[4]
Holland M M, Bitz C M. Polar amplification of climate change in coupled models[J]. Climate Dynamics, 2003, 21(3/4): 221-232.
[5]
Pithan F, Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models[J]. Nature Geoscience, 2014, 7:181-184.
[6]
Rudels B, Friedrich H J, Quadfasel D. The Arctic circumpolar boundary current[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 1999, 46(6): 1023-1062.
[7]
Yang J. The Arctic and Subarctic Ocean flux of potential vorticity and the Arctic Ocean circulation[J]. Journal of Physical Oceanography, 2005, 35(12): 2387-2407.
[8]
Karcher M, Kauker F, Gerdes R, et al. On the dynamics of Atlantic Water circulation in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans (1978-2012), 2007, 112(C4).
[9]
Polyakov I V, Alekseev G V, Timokhov L A, et al. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years[J]. Journal of Climate, 2004, 17(23): 4485-4497.
[10]
Zhang J, Hibler III W D, Steele M, et al. Arctic ice-ocean modeling with and without climate restoring[J]. Journal of Physical Oceanography, 1998, 28(2): 191-217.
[11]
Aksenov Y, Bacon S, Coward A C, et al. Polar outflow from the Arctic Ocean: A high resolution model study[J]. Journal of Marine Systems, 2010, 83(1): 14-37.
[12]
Haynes P H, McIntyre M E. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces[J]. Journal of the Atmospheric Sciences, 1987, 44(5): 828-841.
[13]
Nguyen A T, Menemenlis D, Kwok R. Arctic ice-ocean simulation with optimized model parameters: Approach and assessment[J]. Journal of Geophysical Research: Oceans (1978-2012), 2011, 116(C4).
[14]
Onogi K, Tsutsui J, Koide H, et al. The JRA-25 reanalysis[J]. 気象集誌. 第2輯, 2007, 85(3): 369-432.
[15]
Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 2010, 91(8): 1015-1057.
[16]
Iziomon M G, Mayer H, Matzarakis A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(10): 1107-1116.
[17]
Spall M A. On the circulation of Atlantic Water in the Arctic Ocean[J]. Journal of Physical Oceanography, 2013, 43(11): 2352-2371.
[18]
Zhao J, Cao Y, Shi J. Core region of Arctic Oscillation and the main atmospheric events impact on the Arctic[J]. Geophysical Research Letters, 2006, 33(22): L22708.
[19]
Large W G, Pond S. Sensible and latent heat flux measurements over the ocean[J]. Journal of Physical Oceanography, 1982, 12(5): 464-482.
[20]
Marshall D. Subduction of water masses in an eddying ocean[J]. Journal of Marine Research, 1997, 55(2): 201-222.
[21]
Condron A, Renfrew I A. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation[J]. Nature Geoscience, 2013, 6(1): 34-37.
[22]
Lindsay R, Wensnahan M, Schweiger A, et al. Evaluation of seven different atmospheric reanalysis products in the Arctic[J]. Journal of Climate, 2014, 27(7): 2588-2606.
[23]
Zhang J, Lindsay R, Steele M, et al. What drove the dramatic retreat of arctic sea ice during summer 2007?[J]. Geophysical Research Letters, 2008, 35(11):L11505.
[24]
Hunke E C, Holland M M. Global atmospheric forcing data for Arctic ice-ocean modeling[J]. Journal of Geophysical Research: Oceans (1978-2012), 2007, 112(C4):C04S14.
[25]
Nurser A J G, Bacon S. The Rossby radius in the Arctic Ocean[J]. Ocean Science, 2014, 10(6): 967-975.
[26]
Lique C, Steele M. Where can we find a seasonal cycle of the Atlantic water temperature within the Arctic Basin?[J]. Journal of Geophysical Research: Oceans (1978-2012), 2012, 117(C3):C03026.
[27]
Li X, Su J, Zhao J. An evaluation of the simulations of the Arctic Intermediate Water in climate models and reanalyses[J]. Acta Oceanologica Sinica, 2014, 33(12): 1-14.
[28]
McDougall T J, Klocker A. An approximate geostrophic streamfunction for use in density surfaces[J]. Ocean Modelling, 2010, 32(3): 105-117.
[29]
Aksenov Y, Ivanov V V, Nurser A J, et al. The Arctic circumpolar boundary current[J]. Journal of Geophysical Research: Oceans (1978-2012), 2011, 116(C9):C09017.
[30]
Marshall J, Jamous D, Nilsson J. Entry, flux, and exit of potential vorticity in ocean circulation[J]. Journal of physical oceanography, 2001, 31(3): 777-789.
[31]
Dickson B. Oceanography: All change in the Arctic[J]. Nature, 1999, 397(6718): 389-391.
[32]
Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic\'s shrinking sea-ice cover[J]. Science, 2007, 315(5818): 1533-1536.