全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海洋酸化没有显著影响成体鹿角杯形珊瑚的钙化作用和光合能力

DOI: 10.3969/j.issn.0253-4193.2015.10.006

Keywords: 鹿角杯形珊瑚 酸化 珊瑚礁 钙化作用 Fv/Fm

Full-Text   Cite this paper   Add to My Lib

Abstract:

工业革命以来,人类活动释放的大量CO2进入大气层,不仅产生严重的温室效应,也使得全球海洋出现酸化的现象。造礁珊瑚被认为是受海水酸化影响最大的类群。本研究以鹿角杯形珊瑚(Pocillopora damicornis)为研究对象,通过气体交换法模拟未来的酸化环境(2100年)研究鹿角杯形珊瑚的钙化率和光合能力(Fv/Fm)对酸化的响应。实验设置两个pH组(分别为7.8和8.1),自然光下进行4周的实验,水温控制在(27.5±1)℃。由于珊瑚等生物的代谢过程(主要是呼吸作用),实验系统的pH昼夜变化显著,酸化处理组和对照组的pH分别介于7.69~7.91和7.99~8.29。鹿角杯形珊瑚的生长率介于1.15%~2.09%/周,酸化对鹿角杯形珊瑚的钙化率和光合效率没有显著的影响,鹿角杯形珊瑚对酸化的敏感度低。对比历史研究数据,本研究的结果进一步表明酸化对造礁珊瑚的影响存在种的特异性。推测鹿角杯形珊瑚对酸化的抗性可能与该珊瑚在有光的条件下能够利用HCO3-以及能够上调钙化位点的pH有关。这种特异性的pH缓冲能力使得珊瑚能维持钙化位点钙质基质高的文石饱和度(Ωarag),因此能以小的额外能耗提高造礁珊瑚的钙化率

References

[1]  Sabine C L,Feely R A,Gruber N,et al. The oceanic sink for anthropogenic CO2[J]. Science,2004,305(5682): 367-371.
[2]  Raven J,Caldeira K,Elderfield H,et al. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide[M]. London: The Royal Society,2005.
[3]  Jury C P,Whitehead R F,Szmant A M. Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra(=Madracis mirabilis sensu Wells,1973): bicarbonate concentrations best predict calcification rates[J]. Global Change Biology,2010,16(5): 1632-1644.
[4]  Jokiel P L,Bahr K D,Rodgers K S. Low-cost,high-flow mesocosm system for simulating ocean acidification with CO2 gas[J]. Limnology and Oceanography: Methods,2014,12(5): 313-322.
[5]  Burris J E,Porter J W,Laing W A. Effects of carbon dioxide concentration on coral photosynthesis[J]. Marine Biology,1983,75(2/3): 113-116.
[6]  Goiran C,Al-Moghrabi S,Allemand D,et al. Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate[J]. Journal of Experimental Marine Biology and Ecology,1996,199(2): 207-225.
[7]  Iguchi A,Ozaki S,Nakamura T,et al. Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis[J]. Marine Environmental Research,2012,73: 32-36.
[8]  Hillhouse E W,Grammatopoulos D K. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology[J]. Endocrine Reviews,2006,27(3): 260-286.
[9]  Carreiro-Silva M,Cerqueira T,Godinho A,et al. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification[J]. Coral Reefs,2014,33(2): 465-476.
[10]  Houghton J T,Ding Y,Griggs D J,et al. Climate change 2001: the scientific basis[R]//Contribution of Working Group I to the Third Assessment Report of the Intergoverment Panel on Climate Change. Cambridge: Cambridge University Press,2001: 881.
[11]  Brewer P G. Ocean chemistry of the fossil fuel CO2 signal: the haline signal of "business as usual"[J]. Geophysical Research Letters,1997,24(11): 1367-1369.
[12]  Feely R A,Sabine C L,Lee K,et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science,2004,305(5682): 362-366.
[13]  Kleypas J A,Langdon C. Coral reefs and changing seawater chemistry[M]//Phinney J T,Hoegh-Guldberg O,Kleypas J,eds. Coral Reefs and Climate Change: Science and Management. Washington,DC: American Geophysical Union,2006: 73-110.
[14]  Anthony K R N,Kline D I,Diaz-Pulido G,et al. Ocean acidification causes bleaching and productivity loss in coral reef builders[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(45): 17442-17446.
[15]  Fabry V J,Seibel B A,Feely R A,et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science,2008,65(3): 414-432.
[16]  Langdon C,Takahashi T,Sweeney C,et al. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef[J]. Global Biogeochemical Cycles,2000,14(2): 639-654.
[17]  Baker A C,Glynn P W,Riegl B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts,recovery trends and future outlook[J]. Estuarine,Coastal and Shelf Science,2008,80(4): 435-471.
[18]  Gattuso J P,Allemand D,Frankignoulle M. Photosynthesis and calcification at cellular,organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry[J]. American Zoologist,1999,39(1): 160-183.
[19]  Langdon C,Atkinson M J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment[J]. Journal of Geophysical Research: Oceans,2005,110(C9): C09S07.
[20]  Albright R,Langdon C. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides[J]. Global Change Biology,2011,17(7): 2478-2487.
[21]  Comeau S,Edmunds P J,Spindel N B,et al. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations[J]. Limnology and Oceanography,2014,59(3): 1081-1091.
[22]  Chauvin A,Denis V,Cuet P. Is the response of coral calcification to seawater acidification related to nutrient loading?[J]. Coral Reefs,2011,30(4): 911-923.
[23]  Dufault A M,Ninokawa A,Bramanti L,et al. The role of light in mediating the effects of ocean acidification on coral calcification[J]. The Journal of Experimental Biology,2013,216: 1570-1577.
[24]  Jokiel P L,Rodgers K S,Kuffner I B,et al. Ocean acidification and calcifying reef organisms: a mesocosm investigation[J]. Coral Reefs,2008,27(3): 473-483.
[25]  Ries J B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification[J]. Geochimica et Cosmochimica Acta,2011,75(14): 4053-4064.
[26]  Huang Hui,Yuan Xiangcheng,Cai Weijun,et al. Positive and negative responses of coral calcification to elevated pCO2: case studies of two coral species and the implications of their responses[J]. Marine Ecology Progress Series,2014,502: 145-156.
[27]  Comeau S,Carpenter R C,Nojiri Y,et al. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification[J]. Proceedings of the Royal Society of London B: Biological Sciences,2014,281(1790): 20141339.
[28]  Comeau S,Edmunds P J,Spindel N B,et al. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point[J]. Limnology and Oceanography,2013,58(1): 388-398.
[29]  Edmunds P J. Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp[J]. Limnology and Oceanography,2011,56(6): 2402-2410.
[30]  Rodolfo-Metalpa R,Martin S,Ferrier-Pagès C,et al. Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD[J]. Biogeosciences,2010,7: 289-300.
[31]  Takahashi A,Kurihara H. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment[J]. Coral Reefs,2013,32(1): 305-314.
[32]  Movilla J,Orejas C,Calvo E,et al. Differential response of two Mediterranean cold-water coral species to ocean acidification[J]. Coral Reefs,2014,33(3): 675-686.
[33]  McCulloch M,Falter J,Trotter J,et al. Coral resilience to ocean acidification and global warming through pH up-regulation[J]. Nature Climate Change,2012,2(8): 623-627.
[34]  Ben-Haim Y,Zicherman-Keren M,Rosenberg E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus[J]. Applied and Environmental Microbiology,2003,69(7): 4236-4242.
[35]  Ben-Haim Y,Thompson F L,Thompson C C,et al. Vibrio coralliilyticus sp. nov.,a temperature-dependent pathogen of the coral Pocillopora damicornis[J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(1): 309-315.
[36]  Bourne D G,Munn C B. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef[J]. Environmental Microbiology,2005,7(8): 1162-1174.
[37]  Lesser M P,Weis V M,Patterson M R,et al. Effects of morphology and water motion on carbon delivery and productivity in the reef coral,Pocillopora damicornis(Linnaeus): diffusion barriers,inorganic carbon limitation,and biochemical plasticity[J]. Journal of Experimental Marine Biology and Ecology,1994,178(2): 153-179.
[38]  Richmond R H,Jokiel P L. Lunar periodicity in larva release in the reef coral Pocillopora damicornis at Enewetak and Hawaii[J]. Bulletin of Marine Science,1984,34(2): 280-287.
[39]  Clausen C D,Roth A A. Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis[J]. Marine Biology,1975,33(2): 93-100.
[40]  Erez J,Reynaud S,Silverman J,et al. Coral calcification under ocean acidification and global change[M]//Dubinsky Z,Stambler N,eds. Coral Reefs: An Ecosystem in Transition. Berlin: Springer,2011: 151-176.
[41]  Wicks L C,Roberts J M. Benthic invertebrates in a high-CO2 world[M]//Gibson R N,Atkinson R J A,Gordon J,eds. Oceanography and Marine Biology: An Annual Review,2012,50: 127-188.
[42]  Kleypas J A,Yates K K. Coral reefs and ocean acidification[J]. Oceanography,2009,22(4): 108-117.
[43]  Ries J B,Cohen A L,McCorkle D C. A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula[J]. Coral Reefs,2010,29(3): 661-674.
[44]  Comeau S,Carpenter R C,Edmunds P J. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate[J]. Proceedings of the Royal Society B: Biological Sciences,2015,280(1753): 20122374.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133