全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光强和二氧化碳浓度变化对浒苔幼苗生长及生理的影响

DOI: 10.3969/j.issn.0253-4193.2015.10.008

Keywords: CO2 光强 浒苔幼苗 叶绿素荧光效率 抗氧化活性

Full-Text   Cite this paper   Add to My Lib

Abstract:

大气CO2浓度升高引起的海洋酸化如何在光变环境下影响大型海藻固碳量的问题,关系到未来海洋初级生产力的变化趋势。为研究大型海藻对CO2浓度升高和光强变化的响应,本文选取浒苔(Ulva prolifera)幼苗为实验材料,探讨其在不同光强下[80、260 μmol/(m2·s)]和两种CO2浓度(正常CO2浓度:400 μL/L和高CO2浓度:1 000 μL/L)下的生理变化。研究发现,在正常CO2浓度、高光条件下,浒苔幼苗的生长最快,超氧化物特化酶(SOD)活性最高,而过氧化氢酶(CAT)活性在低光、高CO2处理下有最大值。光合色素含量和光系统Ⅱ的光化学效率在不同处理间没有显著性差异,但叶绿素a与类胡萝卜素的比值在低光正常CO2处理下有最大值。同时,高光高CO2处理下,浒苔幼苗的可溶性蛋白含量最低

References

[1]  Li Y,Gao K,Villafae V E,et al. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum[J]. Biogeosciences,2012,9(10): 3931-3942.
[2]  李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社,2000: 267-268. Li Hesheng. Experimental principle and technology of plant physiology and biochemistry[M]. Beijing:Higher Education Press, 2000:267-268.
[3]  Lapointe B E,Tenore K R,Dawes C J. Interactions between light and temperature on the physiological ecology of Gracilaria tikvahiae(Gigartinales: Rhodophyta)[J]. Marine Biology,1984,80(2): 161-170.
[4]  刘雅萌,徐军田,李信书,等. 不同增殖方式来源的绿潮藻浒苔藻体生长及光合生理特性差异[J]. 水产学报,2014,38(5): 691-696. Liu Yameng,Xu Juntian,Li Xinshu,et al. The effects of different proliferative ways for the green tide alga Ulva prolifera on their growth and photophysiological performances[J]. Journal of Fisheries of China,2014,38(5): 691-696.
[5]  Havaux M,Tardy F. Thermostability and photostability of photosystem Ⅱ in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes[J]. Plant Physiology,1997,113(3): 913-923.
[6]  Zou Dinghui. Effects of elevated atmospheric CO2 on growth,photosynthesis and nitrogen metabolism in the economic brown seaweed,Hizikia fusiforme (Sargassaceae,Phaeophyta)[J]. Aquaculture,2005,250(3/4): 726-735.
[7]  Wu Hongyan,Zou Dinghui,Gao Kunshan. Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro-and macro-algae[J]. Science in China Series C: Life Sciences,2008,51(12): 1144-1150.
[8]  Xu Zhiguang,Zou Dinghui,Gao Kunshan. Effects of elevated CO2 and phosphorus supply on growth,photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis(Rhodophyta)[J]. Botanica Marina,2010,53(2): 123-129.
[9]  邹定辉,高坤山. 高CO2浓度对大型海藻光合作用及有关过程的影响[J]. 生态学报,2002,22(10): 1750-1757. Zou Dinghui,Gao Kunshan. Effects of elevated CO2 concentration on the photosynthesis and related physiological processes in marine macroalgae[J]. Acta Ecologica Sinica,2002,22(10): 1750-1757.
[10]  邓亚运,邹定辉. 大气CO2浓度升高对不同氮生长条件下的两种大型海藻光合作用的影响[J]. 生态学杂志,2014,33(6): 1520-1527. Deng Yayun,Zou Dinghui. Effects of elevated atmospheric CO2 on photosynthesis of Gracilaria lemaneiformis and Ulva conglobata grown at low and high N supplies[J]. Chinese Journal of Ecology,2014,33(6): 1520-1527.
[11]  Li Yahe,Xu Juntian,Gao Kunshan. Light-modulated responses of growth and photosynthetic performance to ocean acidification in the model diatom Phaeodactylum tricornutum[J]. PLoS One,2014,9(5): e96173.
[12]  Li Gang,Campbell D A. Rising CO2 interacts with growth light and growth rate to alter photosystem Ⅱ photoinactivation of the coastal diatom Thalassiosira pseudonana[J]. PLoS One,2013,8(1): e55562.
[13]  朱政,蒋家月,江昌俊,等. 低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响[J]. 安徽农业大学学报,2011,38(1): 24-26. Zhu Zheng,Jiang Jiayue,Jiang Changjun,et al. Effects of low temperature stress on SOD activity,soluble protein content and soluble sugar content in Camellia sinensis leaves[J]. Journal of Anhui Agricultural University,2011,38(1): 24-26.
[14]  Nie G,Hendrix D L,Webber A N,et al. Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO2 concentration in the field[J]. Plant Physiology,1995,108(3): 975-983.
[15]  Haines A. Climate change 2001: the scientific basis. contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change[J]. International Journal of Epidemiology,2003,32(2): 321-321.
[16]  Sabine C L,Feely R A,Gruber N,et al. The oceanic sink for anthropogenic CO2[J]. Science,2004,305(5682): 367-371.
[17]  Beardall J,Stojkovic S,Gao Kunshan. Interactive effects of nutrient supply and other environmental factors on the sensitivity of marine primary producers to ultraviolet radiation: implications for the impacts of global change[J]. Aquat Biol,2014,22: 5-23.
[18]  H?der D P,Villafane V E,Helbling E W. Productivity of aquatic primary producers under global climate change[J]. Photochemical & Photobiological Sciences,2014,13(10): 1370-1392.
[19]  Cai Weijun,Hu Xinping,Huang Weijen,et al. Acidification of subsurface coastal waters enhanced by eutrophication[J]. Nature Geoscience,2011,4(11): 766-770.
[20]  Zhai W D,Zheng N,Huo C,et al. Subsurface pH and carbonate saturation state of aragonite on the Chinese side of the North Yellow Sea: seasonal variations and controls[J]. Biogeosciences,2014,11(4): 1103-1123.
[21]  Roleda M Y,Morris J N,McGraw C M,et al. Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera(Laminariales,Phaeophyceae)[J]. Global Change Biology,2012,18(3): 854-864.
[22]  Bender D,Diaz-Pulido G,Dove S. The impact of CO2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects[J]. Journal of Phycology,2014,50(1): 203-215.
[23]  Olischl?ger M,Bartsch I,Gutow L,et al. Effects of ocean acidification on growth and physiology of Ulva lactuca(Chlorophyta) in a rockpool-scenario[J]. Phycological Research,2013,61(3): 180-190.
[24]  Hofmann L C,Straub S,Bischof K. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis[J]. Journal of Experimental Botany,2013,64(4): 899-908.
[25]  徐军田,高坤山. 二氧化碳和阳光紫外辐射对龙须菜生长和光合生理的影响[J]. 海洋学报,2010,32(5): 144-151. Xu Juntian,Gao Kunshan. The influence of carbon dioxide and solar UVR on the growth,photosynthesis and pigments contents of Gracilaria lemaneiformis[J]. Haiyang Xuebao,2010,32(5): 144-151.
[26]  Gao Kunshan,Xu Juntian,Gao Guang,et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nature Climate Change,2012,2(7): 519-523.
[27]  Xu Juntian,Gao Kunshan,Li Yahe,et al. Physiological and biochemical responses of diatoms to projected ocean changes[J]. Marine Ecology Progress Series,2014,515: 73-81.
[28]  吕永林,张永普,李凯,等. 浙江洞头大竹屿岛潮间带大型底栖生物多样性[J]. 生态学杂志,2011,30(4): 707-716. Lv Yonglin,Zhang Yongpu,Li Kai,et al. Macrobenthos diversity in intertidal zone of Dazhuyu Island,Dongtou County of Zhejiang Province[J]. Chinese Journal of Ecology,2011,30(4): 707-716.
[29]  Wellburn A R. The spectral determination of chlorophylls a and b,as well as total carotenoids,using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology,1994,144(3): 307-313.
[30]  Webb W L,Newton M,Starr D. Carbon dioxide exchange of Alnus rubra[J]. Oecologia,1974,17(4): 281-291.
[31]  Gesch R W,Boote K J,Vu J C V,et al. Changes in growth CO2 result in rapid adjustments of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene expression in expanding and mature leaves of rice[J]. Plant Physiology,1998,118(2): 521-529.
[32]  Makino A,Mae T. Photosynthesis and plant growth at elevated levels of CO2[J]. Plant and Cell Physiology,1999,40(10): 999-1006.
[33]  Kroeker K J,Kordas R L,Crim R,et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming[J]. Global Change Biology,2013,19(6): 1884-1896.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133