全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

潮间带盐沼植物黏附悬浮颗粒物的差异性研究

, PP. 114-119

Keywords: 盐沼,植物,悬浮颗粒物,潮间带,长江口

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究潮间带盐沼植物黏附悬浮颗粒物的差异性,在长江口选择了三种盐沼植物群落对它们黏附的颗粒物质量进行测定,结果表明:(1)植物群落距潮沟或光滩越近,生长位置的滩面高程越低,则黏附颗粒物越多,而在盐沼前缘单位滩地面积上植物黏附颗粒物的质量以1%~3%/m(单位水平距离)的速率从水体悬浮颗粒物含量相对较高的盐沼外缘光滩或潮沟向盐沼内部减小;(2)植物黏附的颗粒物量在垂向上从上到下急剧增大,通常在靠近滩面5~10cm的部分植物的黏附量占植物黏附总量的三分之一以上;(3)相邻群落单位滩地面积的互花米草的总黏附量明显多于芦苇和海三棱藨草,而按单位生物量来说单位滩地面积上三种盐沼植物黏附的颗粒物以海三棱藨草最多,芦苇最少,互花米草介于两者之间;(4)海三棱藨草的黏附量在季节上差异性明显,秋初(9月)是春末(5月)的6倍,在冬季该植物消失,其黏附颗粒物的功能也消失。造成盐沼植物黏附悬浮颗粒物差异的根本原因是生物量、悬浮颗粒物含量和淹没条件(淹没的深度、时间、频率)的不同。

References

[1]  LEONARD L A, REED D J.Hydrodynamics and sediment transport through tidal marsh canopies[J]. Journal of Coastal Research, 2002, 36:459—469.
[2]  FAN D, GUO Y, WANG P, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: with an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26: 517—538.
[3]  CHAPMAN V J. Salt Marshes and Deserts of the World [M]. London: Leonard Hill, 1960: 392.
[4]  杨世伦, 时钟, 赵庆英.长江口潮沼植物对动力沉积过程的影响[J].海洋学报, 2001, 23(4): 75—81.
[5]  李华,杨世伦.潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J].地球科学进展, 2007, 22(6): 583-591.
[6]  MORRIS J T, SUNDARESHWAR P V, NIETCH C T, et al. Responses of coastal wetlands to rising sea level[J]. Ecology, 2002, 83: 2869—2877.
[7]  上海市海岛资源综合调查报告编写组. 上海市海岛资源综合调查报告 . 上海: 上海科学技术出版社, 1996:252.
[8]  YANG S L, FRIEDRICHS C T , DING P X. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm[J]. Estuaries, 2003, 26: 1416—1425.
[9]  WOODROFFE C D. Coasts: Form, Processes and Evolution[M]. Cambridge: Cambridge University Press, 2003: 623.
[10]  BASSOULLET P, HIR P L, GOULEAU D, et al. Sediment transport over an intertidal mudflat: field investigations and estimation of fluxes within the "Baie de Marennes-Oleron" (France)[J]. Continental Shelf Research, 2000, 20:1635—1653.
[11]  WANG Y P, GAO S, JIA J J.High-resolution data collection for analysis of sediment dynamic processes associated with combined current-wave action over intertidal flats[J]. Chinese Science Bulletin, 2006,51(7): 866—877.
[12]  宋连清.互花米草及其对海岸的防护作用[J].东海海洋, 1997, 15: 11—19.
[13]  YANG S L. The role of Scirpus marsh in attenuation of hydro-dynamics and retention of fine-grained sediment in the Yangtze Estuary[J]. Estuarine, Coastal and Shelf Science, 1998, 47: 227—233.
[14]  BOUMA T J, DE VRIES M B, LOW E, et al. Flow hydrodynamics on a mudflat and in tidal marsh vegetation: identifying general relationships for habitat characterizations[J].Hydrobiologia, 2005, 540: 259—274.
[15]  SHI Z, HAMILTON L J, WOLANSKI E. Near-bed currents and suspended sediment transport in salt-marsh canopies[J]. Journal of Coastal Research, 2000, 16: 909—914.
[16]  YANG S L, DING P X, CHEN S L. Changes in progradation rate of the tidal flats at the mouth of the Changjiang River, China[J]. Geomorphology, 2001, 38: 167—180.
[17]  杨世伦, 杜景龙, 郜昂, 等.近半个世纪长江口九段沙湿地的冲淤演变[J].地理科学, 2006, 26(3): 335—339.
[18]  LI H, YANG S L. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta[J]. Journal of Coastal Research, 2009,DOI:10.2112/08—1010.1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133