MARGARIT G, MALLORQUI J J, RIUS J M, et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets for vessel classification studies [J]. IEEE Trans Geosci Remote Sensing, 2006, 4412: 3517—3526.
[2]
BACHMANN C M, MUSMAN S A, SCHULTZ A. Lateral inhibition neural networks for classification of simulated radar imagery // IEEE International Conference on Neural Networks. Baltimore:Lucas S M,1992:115—120.
[3]
ASKARI F, ZERR B. Automatic approach to ship detection in spaceborne synthetic aperture radar imagery: an assessment of ship detection capability using RADARSAT . Technical Report SACLANTCEN-SR-338. La Spezia, Italy: SACLANT Undersea Research Centre,2000.36.
ZHANG Xi, ZHANG Jie, JI Yong-gang. Comparison and evaluation of ship target detection algorithms with SAR images. European Space Agency, (Special Publication) ESA SP, n 656 SP //Proceedings of SeaSAR 2008. Rome:ESA.2008: 4.
MARGARIT G, FABREGAS X, MALLORQUI J J. Study of the vessel speed and sea swell effects on simulated polarimetric high resolution SAR images // STEIN T I. Proceedings of IGARSS2004. US IEEE 2004 International Geoscience and Remote Sensing Symposium. 2004: 603—606.
[11]
OSMAN H, BLOSTEIN S, GAGNON L. Classification of ships in airborne sar imagery using back propagation neural networks [J]. SPIE Proc, 1997, 3161:126—136.