全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2008年夏季白令海陆架区微微型浮游植物分布及环境相关性分析

, PP. 134-145

Keywords: 白令海,微微型浮游植物,流式细胞术,环境相关性

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2008年夏季我国第3次北极科学考察资料,基于流式细胞技术,对白令海北部陆架区的微微型浮游植物丰度、细胞大小(碳含量)、色素浓度的分布特征进行了分析,并对该类群的环境适应性进行了研究。结果表明,微微型浮游植物中仅含聚球藻和真核藻,其丰度范围分别为0.14×1062.69×106和0.23×106-12.49×106个/dm3。聚球藻的叶绿素a和藻红蛋白含量、微微型真核藻的叶绿素a含量与类群丰度以及微微型真核藻的类胡萝卜素含量与细胞大小间均存在同向变化趋势。两类藻偏向于喜温嗜淡型,更适合在寡营养环境中保持较高的丰度,但能在高营养盐浓度下形成相对较高的碳含量。越接近陆地,细胞越小,丰度越大,碳含量及FL2/FL3越低;所处层位越深、纬度越高,则细胞越大,碳含量及FL2/FL3越高。北极气温升高和径流量的增加有利于陆架区微微型浮游植物类群丰度的增加。

References

[1]  YENTSCH C S, PHINNEY D A. Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations [J].J Plankton Res, 1985, 7(5): 617—632.
[2]  VELDHUIS M J W, CUCCI T L, SIERACKI M E. Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications [J]. J Phycol, 1997, 33(3): 527—541.
[3]  REDFIELD A C. On the proportions of organic derivations in sea water and their relation to the composition of plankton[M]//James Johnstone Memorial Volume.Liverpool: University Press of Liverpool, 1934: 177—192.
[4]  HAMILTON A K, LOVEJOY C, GALAND P E, et al. Water masses and biogeography of picoeukaryote assemblages in a cold hydrographically complex system [J]. Limnol Oceanogr, 2008, 53(3): 922—935.
[5]  CAMPBELL L, NOLLA H A, VAULOT D. The importance of prochlorococcus to community structure in the central North Pacific Ocean [J]. Limnol Oceanogr, 1994, 39(4): 954—961.
[6]  ZHANG Y, JIAO N, HONG N. Comparative study of picoplankton biomass and community structure in different provinces from subarctic to subtropical oceans [J]. Deep-Sea Res II, 2008, 55(14-15): 1605—1614.
[7]  HOFSTAAT J W, DE VREEZE M E J, VAN ZEIJL W J M, et al. Flow cytometric discrimination of phytoplankton classes by fluorescence emission and excitation properties [J]. J Fluorescence, 1991, 1: 249—265.
[8]  LIU H, SUZUKI K, MINAMI C, et al. Picoplankton community structure in the subarctic Pacific Ocean and the Bering Sea during summer 1999 [J]. Mar Ecol Prog Ser, 2002, 237(3): 1—14.
[9]  NETTO A T, CAMPOSTRINI E, OLIVEIRA J, et al. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves [J]. Scientia Horticulturae, 2005, 104(2): 199—209.
[10]  CELLAMARE M, ROLLAND A, JACQUET S. Flow cytometry sorting of freshwater phytoplankton [J]. J Appl Phycol, 2010, 22(1): 87—100.
[11]  GRASSHOFF K, EHRHARDT M, KREMING K.Methods of Seawater Analysis 3ed[M].Germany Wainheins.1999:600.
[12]  SAINDON D. Quantifying the magnitude of nutrient limitation on phytoplankton in Kings Bay, Florida, USA .University of Florida, 2005.
[13]  HOFFMANN L J, PEEKEN I, LOCOCHE K, et al. Different reactions of Southern Ocean phytoplankton size classes to iron fertilization[J]. Limnol Oceanogr, 2006, 51(3): 1217—1229.
[14]  WALERON M, WALERON K, VINCENT W F, et al. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean [J]. FEMS Microbiol Ecol, 2007, 59(2): 356—365.
[15]  OLSON R J, ZETTLER E R, ANDERSON O K. Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry [J]. Cytometry, 1989, 10(5): 636—643.
[16]  GUTIUTIRREZ-RODRIUEZ A, LATASA M, ESTRADA M, et al. Carbon fluxes through major phytoplankton groups during the spring bloom and post-bloom in the northwestern Mediterranean Sea [J]. Deep-Sea Res: I, 2010, 57(4): 486—500.
[17]  MENDOZA H, DE LA JARA A, FREIJANES K, et al. Characterization of Dunaliella salina strains by flow cytometry: a new approach to select carotenoid hyperproducing strains [J]. Electronic J Biotech, 2008, 11(4): 1—13.
[18]  ZHANG F, SU R, HE J, et al. Identifying phytoplankton in seawater based on discrete excitation-emission fluorescence spectra [J]. J Phycol, 2010, 46(2): 403—411.
[19]  BALFOORT H W, SNOEK J, SMITS J R M, et al.Automatic identification of algae: Neural network analysis of flow cytometric data[J].J Plankton Res.1992,14(4): 575—589.
[20]  ZAKHIA F, JUNGLBUT A-D, TATON A, et al.Cyanobacteria in cold ecosystems[M]//MARGESIN R, et al.Psychrophiles: from Biodiversity to Biotechnology.Berlin Springer-Verlag.2008: 121—134.
[21]  ANTONIADES D, DOUGLAS M S V, SMOL J P. Benthic diatom autecology and inference model development from the Canadian High Arctic Archipelago [J]. J Phycol, 41(1): 30—45.
[22]  BEUTLER M, WILSHIRE K H, MEYER B, et al. A fluorometric method for the differentiation of algal populations in vivo and in situ [J]. Photosyn Res, 2002, 72(1): 39—53.
[23]  VINCENT W F, BOWMAN J P, RANKIN L M, et al. Phylogenetic diversity of picocyano-bacteria in arctic and antarctic ecosystems[M]//BELL C, BRYLINSKY M, JOHNSON-GREEN M. 2000: 317—322.
[24]  GARNEAU M- , VINCENT W F, ALONSO-S EZ L, et al. Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem [J]. Aquat Microb Ecol, 2006, 42: 27—40.
[25]  VELDHUIS M J W, TIMMERMANS K R, CROOT P W, et al. Picophytoplankton: a comparative study of their biochemical composition and photosynthetic properties [J]. J Sea Res, 2005, 53(1-2): 7—24.
[26]  LI W K W, MACLAUGHLIN F A, LOVEJOY C, et al. Smallest algae thrive as the Arctic Ocean freshens[J]. Science, 2009, 326(5952): 539.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133