全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

绿潮藻浒苔光合固碳与防治海水酸化的作用Ⅰ.光合固碳与海水pH值提高速率研究

, PP. 162-168

Keywords: 浒苔,溶解无机碳,光合固碳,海洋酸化,水生,气生

Full-Text   Cite this paper   Add to My Lib

Abstract:

以黄海绿潮暴发的主要漂浮种类浒苔(Ulvaprolifera)为材料,在实验室条件下研究了浒苔光合参数、固碳速率及提升海水pH的作用,结果表明:浒苔光合作用半饱和常数Km为0.25mmol/dm3,光合作用饱和时海水溶解无机碳(DIC)浓度也只需1.2mmol/dm3,为正常海水DIC浓度(2.4mmol/dm3)一半,故黄海绿潮暴发时藻体可以一直保持光合作用饱和与旺盛生长状态。水生条件下浒苔藻体主要吸收海水中的DIC,0.5g/dm3培养密度下,1个光周期内净光合固碳速率为10.92mg/(g·d)(鲜重)。连续培养5d,0.5,1.0和2.5g/dm3培养密度组的DIC浓度从22mg/dm3分别降为4.85,2.62和0.66mg/dm3,表明DIC去除率随藻体培养密度提高而增强,分别可达77.78%,88.00%,96.98%;藻体吸收海水中无机碳的同时可使海水pH升高,0.5g/dm3培养密度下,1个光周期内净提升pH速率高达0.96/(dm3·g·d)。连续培养5d,0.5,1.0和2.5g/dm3培养密度组第1天其pH分别可达到9.1,9.2和9.7,表明藻体密度越高pH提升越快,而且第5天pH均可稳定在9.9左右。浒苔暴露在空气中可直接吸收空气中CO2,1个光周期内其光合固碳速率约为46.14mg/(g·d),而在海水中的光合固碳速率为10.92mg/(g·d),可见浒苔在空气中的光合固碳速率是水中的4.23倍。水生和气生时单位质量藻体的固碳效率因藻体间相互遮蔽而下降。结果可为今后黄海绿潮暴发机制及CO2减排和防止海洋酸化作用的评估提供技术支撑。

References

[1]  DONEY S C. The dangers of ocean acidification[J]. Sci Am,2006,294(3):58-65.
[2]  KURIHARA H,KATO S,ISHIMATSU A. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas[J].Aquat Biol,2007,1:91-98.
[3]  田千桃,霍元子,张寒野,等.浒苔和条浒苔生长及其氨氮吸收动力学特征研究[J].上海海洋大学学报,2010,19(2):252-258.
[4]  田千桃,霍元子,王阳阳,等. 浒苔对NH+4-N与NO-3-N吸收的相互作用[J].海洋科学,2010,34(7):41-45.
[5]  邹定辉,阮祚禧,陈伟洲. 干出状态下羊栖菜的光合作用特性[J]. 海洋通报,2004,23(5):33-39.
[6]  ZOU D H,GAO K H. Photosynthetic responses to inorganic carbon in Ulva lactuca under aquatic and aerial states[J].Acta Bot Sin,2002,44(11):1291-1296.
[7]  邹定辉,高坤山. 大型海藻类光合无机碳利用研究进展[J]. 海洋通报,2001,20(5):83-90.
[8]  LARSSON C,AXELSSON L,RYBERG H,et al. Photosynthetic carbon utilization by Enteromorpha intestinalis(Chlorophyta) from a Swedish rockpool[J]. Eur J Phycol,1997,32(1):49-54.
[9]  陈秀国. 浅析海水养殖对水环境的影响及防治措施[J]. 现代农业科学,2008,15(11):111-112.
[10]  RAVEN J A.Putting the C in phycology[J]. Eur J Phycol,1997,32(4):319-333.
[11]  李检平,赵卫红,付敏,等. 氮磷营养盐对浒苔生长影响的初步探讨[J]. 海洋科学,2010,34(4):45-48.
[12]  忻丁豪,任松,何培民,等. 黄海海域浒苔属(Enteromorpha)生态特征初探[J]. 海洋环境科学,2009,28(2):190-192.
[13]  RIEBESELL U. Effects of CO2 enrichment on marine phytoplankton[J]. J Oceanogr,2003,60(4):719-729.
[14]  SIEGENTHALER U,SARMIENTO J L. Atomospheric carbon dioxide and the ocean[J]. Nature,1993,9(365):119-125.
[15]  SMITH S V. Marine macrophytes as a global carbon sink[J]. Science,1981,211:828-840.
[16]  REHDANZ K,RICHARD S J T,WETZEL P,et al. Ocean carbon sinks and international climate policy[J]. Energ Policy,2006,34:3516-3526.
[17]  姜红霞,高坤山. 干出和紫外辐射对坛紫菜光合作用的影响[J].自然科学进展,2009,19(8):835-840.
[18]  MERCADO J M,NIELL F X. Carbon dioxide uptake by Bostrychia scorpiodes (Rhodophyceae) under emersed conditions[J]. Eur J Phycol,2000,35:45-51.
[19]  ANDRA J R,BRUN F G,PREZ-LLORNS J L,et al. Acclimation responses of Gracilaria sp.(Rhodophyta) and Enteromorpha intestinalis (Chlorophyta) to changes in the external inorganic carbon concentration[J]. Bot Mar,2001,44(4):361-370.
[20]  ZOU D H,GAO K H. Exogenous carbon acquisition of photosynthesis in Porphyra haitanensis(Bangiales,Rhodophyta) under emersed state[J].Prog Nat Sci,2004,14(2):34-40.
[21]  AXELSSON L,RYBERG H,BEER S. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca[J]. Plant Cell Environ,1995,18(4):439-445.
[22]  邹定辉.脱水对浒苔光合作用的影响[J]. 湛江海洋大学学报,2001,21(2):30-34.
[23]  郭赣林,董双林.干出对潮间带不同垂直位置海藻的生长及光合作用速率的影响[J]. 海洋湖沼通报,2008,4:78-84.
[24]  ZOU D H,GAO K H,RUAN Z X. Daily timing of emersion and elevated atmospheric CO2 concerntration affect photosynthetic performance of the intertidal macroalga Ulva lactuca(Chlorophyta) in sunlight[J].Bot Mar,2007,50(5):275-279.
[25]  BENJAMIN M,JIL L Deikman.Enteromorpha clathrata:a potential seawater-irrigated crop[J].Bioresource Technol,1995,52:225-260.
[26]  CHUNG I K,BEARDALL J,MEHTA S,et al. Using marine macroalgae for carbon sequestration:a critical appraisal[J].J Appl Phycol,2011,23(5):877-886.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133