全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一个考虑潮汐、中尺度涡和地形影响的南海底部环流诊断模型

DOI: 10.3969/j.issn.0253-4193.2013.05.001, PP. 1-13

Keywords: 地形,潮汐混合,涡致混合,吕宋海峡“深水瀑布”,诊断模型,南海底层环流

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文构造了一个考虑潮汐、中尺度涡和地形影响下的南海底部环流诊断模型。在该模型中,潮汐混合和涡致混合引起的垂直速率用一个类似的改进参数化方案来表示。该模型结果显示在南海深层吕宋海峡"深水瀑布"和斜压影响最大,潮汐作用和中尺度涡影响次之,风场的影响最小。斜压影响的整体效应与其他因素相反。潮汐混合与涡致混合具有明显的地形依赖性。潮汐混合主要集中在南海北部海盆地形较为陡峭的陆坡区和南海中部海山区,而涡致混合主要集中在海盆西边界区以及中部海山区。在不考虑吕宋海峡"深水瀑布"、潮汐和中尺度涡的情况下(对应吕宋海峡关闭),南海底部环流为反气旋式环流。考虑吕宋海峡"深水瀑布"后,南海底层环流为气旋式环流,而潮汐混合和涡致混合起到加强整个气旋式环流强度的作用。此外,该模型还给出了南海底部环流量级大小与地形坡度之间的密切关系,即地形坡度较大的地方,其流速也大。这对于现场观测有着一定的参考意义。最后,本文用尺度分析的方法从理论上分析了该模型的适用性,证实了该模型具有一定的可靠性。

References

[1]  Nilsson J, Walin G., Brostrm G. Thermohaline circulation induced by bottom friction in sloping-boundary basins[J].J Mar Res, 2005, 63:705-728.
[2]  Isachsen, Pl E, LaCasce J H, et al. Wind-driven variability of the large-scale recirculating flow in the Nordic Seas and Arctic Ocean[J]. Phys Oceanogr, 2003, 33: 2534-2550.
[3]  Bretherton F P, Haidvogel D B. Two-dimensional turbulence above topography[J]. Fluid Mech, 1976, 78: 129-154.
[4]  Holloway G. Observing global ocean topostrophy[J] J Geophys Res, 2008,113, C07054.
[5]  Chelton D B, DeSzoeke R A, Schlax M G. Geographical variability of the first baroclinic Rossby radius of deformation[J]. J Phys Oceanogr, 1998, 28: 433-460.
[6]  Codiga Daniel L, Peter Cornillon P. Effects of geographic variation in vertical mode structure on the sea surface topography, energy, and wind forcing of baroclinic Rossby waves[J]. J Phys Oceanogr, 2003, 33:1219-1230.
[7]  Chu Peter C, Li Rongfeng. South China Sea isopycnal-surface circulation[J]. J Phys Oceanogr, 2000, 30: 2419-2438.
[8]  谢玲玲. 西北太平洋环流及其与南海水交换研究[D].青岛:中国海洋大学,2009.
[9]  Stommel H, Arons A B. On the abyssal circulation of the world ocean:Ⅰ. Stationary flow patterns on a sphere[J].Deep-Sea Res, 1960,6: 140-154.
[10]  Broecker W S, Patzert W C, Toggweiler J R, et al. Hydrography, chemistry, and radioisotopes in the southeast Asian basins[J]. Geophys Res, 1986, 91: 14345-14354.
[11]  Wang J. Observation of abyssal flows in the Northern South China Sea[J]. Acta Oceanogr, Taiwan, 1986,16: 36-45.
[12]  Qu T, Girton J B, Whitehead J A. Deepwater overflow through Luzon Stait[J]. Geophys Res, 2006,111, C01002.
[13]  Yang Qingxuan, Tian Jjiwei, Zhao Wei. Observation of Luzon Strait transport in summer 2007[J]. Deep-Sea Research Ⅰ,2010, 57(5): 670-676.
[14]  田纪伟,曲堂栋.南海深海环流研究进展与展望[J].科学通报,2012,57: 1827-1832.
[15]  Shao L, Li X, Geng J, et al. Deep water bottom current deposition in the northern[J]. Sci China Ser D-Earth Sci, 2007, 50 (7): 1060-1066.
[16]  Wang Y, Fang G, Wei Z, et al. Interannual variation of the South China Sea circulation and its relation to El Ni?o, as seen from a variable grid global ocean model[J]. Geophys Res, 2006,111, C11S14.
[17]  Li L, Qu T. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions[J]. Geophys Res-Oceans, 2006,111, C05017,doi:10.1029/2005JC003164.
[18]  Chao S Y, Shaw P T, Wu S Y. Deep water ventilation in the South China Sea[J]. Deep-Sea Res Part Ⅰ, 1996, 43:445-466.
[19]  Yuan D. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport[J]. Acta Oceanol Sin, 2002, 21: 187- 202.
[20]  Chen G, Hou Y, Chu X. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Geophys Res, 2011,116, C06018.
[21]  Zhai X, Johnson H L, Marshall D P. Significant sink of ocean-eddy energy near western boundaries[J]. Nat Geosci, 2010,3:608-612.
[22]  Simmons H L, Jayne S R, St. Laurent L C, et al. Tidally driven mixing in a numerical model of the ocean general circulation[J]. Ocean Modelling, 2004,6: 245-263.
[23]  Wang G H, Li R F, Yan C X. Advances in studying oceanic circulation from hydrographic data with applications in the South China Sea[J]. Adv Atmos Sci, 2003, 20(6): 914-920.
[24]  Chu P C. P-vector method for determining absolute velocity from hydrographic data[J]. Marine Technology Society Journal, 1995, 29(3): 3-14.
[25]  Mellor G L, Mechoso C R, Keto E. A diagnostic calculation of the general circulation of the Atlantic Ocean[J]. Deep-Sea Res, Part A, 1982,29:1171-1192.
[26]  Stommel H, Arons A B. On the abyssal circulation of the World Ocean:Ⅱ. An idealized model of the circulation pattern and amplitude in oceanic basins[J]. Deep-Sea Res, 1960, 6: 217-233.
[27]  Nitani H. Beginning of the Kuroshio[M]//Stommel H, Yoshida K. Kuroshio: Physical Aspects of the Japan Current. Seattle: Univ. of Wash. Press, 1972: 129-163,
[28]  Wyrtki K. Physical oceanography of the southeast Asian waters[R]. Naga Rep., Scripps Inst. of Oceanogr., La Jolla, Calif,1961: 2195,
[29]  Liu C T, Liu R J. The deep current in the Bashi Channel[J]. Acta Oceanogr, Taiwan, 1988,20:107-116.
[30]  Tian J, Yang Q, Liang X, et al. Observation of Luzon Strait transport[J]. Geophys Res Lett, 2006,33, L19607.
[31]  Chang Y T, Hsu W L, Tai J H, et al. Cold deep water in the South China Sea[J].J Oceanogr, 2010,66:183-190.
[32]  Luedmann T, Wong H K, Berglar K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophys Res Lett, 2005, 32:L05614.
[33]  郑红波, 阎贫, 邢玉清,等. 反射地震方法研究南海北部的深水底流[J].海洋学报,2012,34(2):192-198
[34]  魏泽勋.中国近海环流及其季节变化的数值模拟[D].青岛:中国科学院海洋研究所,2004.
[35]  Wang G, Xie S P, Qu T, et al. Deep South China Sea circulation[J]. Geophys Res Lett, 2011, 38, L05601.
[36]  Wang G, Su J, Chu P. Mesoscale eddies in the South China Sea observed with altimeter data[J] Geophys Res Lett, 2003,30(21): 2121.
[37]  Dewar W K, Hogg A M. Topographic inviscid dissipation of balanced flow[J]. Ocean Modelling,2010, 32:1—13.
[38]  Tian Jiwei, Yang Qingxuan, Wei Zhao. Enhanced Diapycnal Mixing in the South China Sea[J]. Phys Oceanogr, 2009,39: 3191-3203.
[39]  Saenko, Oleg A, Zhai Xiaoming, et al. The combined effect of tidally and eddy-driven diapycnal mixing on the large-scale ocean circulation[J]. Phys Oceanogr, 2012, 42: 526-538.
[40]  Stommel H, Schott F. The Beta spiral and the determination of the absolute velocity field from hydrographic station data[J]. Deep-Sea Research, 1977, 24: 325-329.
[41]  Wunsch C. The North Atlantic general circulation west of 50°W determined by inverse methods[J]. Rev Geophys Space Phys, 1978,16: 538-560.
[42]  Yuan Y C, Liao G H, Xu X H. Three dimensional diagnostic modeling study of the South China Sea circulation before onset of summer monsoon in 1998[J]. J Oceanogr, 2007,63(1): 77-100.
[43]  N?st O A, Isachsen P E. The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics[J]. Mar Res, 2003, 61:175-210.
[44]  Aaboe S,N?st O A. A diagnostic model of the Nordic Seas and Arctic Ocean circulation: Quantifying the effects of a variable bottom density along a sloping topography[J]. Phys Oceanogr, 2008, 38:2685-2703.
[45]  Holloway G. Systematic forcing of large-scale geophysical flows by eddy-topography interaction[J]. Fluid Mech, 1987,184:463-476.
[46]  Holloway G. Representing topographic stress for large scale ocean models[J]. J Phys Oceanogr, 1992, 22:1033-1046.
[47]  St. Laurent L, Simmons H L, Jayne S R. Estimates of tidally driven enhanced mixing in the deep ocean[J]. Geophys Res Lett, 2002, 29: 2106.
[48]  Cai S, Long X, Wu R, et al. Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea[J]. J Mar Syst, 2008, 74 (1/2): 711-720.
[49]  Carnes, Michael R. Description and Evaluation of GDEM-V 3.0[R]. Naval Oceanographic Office, February 2003.
[50]  Nakano Hideyuki, Nobuo Suginohara. Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model[J]. J Phys Oceanogr, 2002, 32: 1209-1227.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133