全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南海北部微型异养鞭毛虫的时空分布

DOI: 10.3969/j.issn.0253-4193.2013.03.026, PP. 225-238

Keywords: 微型异养鞭毛虫,丰度,生物量,生态分布,南海北部

Full-Text   Cite this paper   Add to My Lib

Abstract:

于2009年7月20日至8月16日(夏季),2010年1月6日至30日(冬季),2010年10月26日至11月24日(秋季)和2011年4月30日至2011年5月24日(春季)在南海北部调查了微型异养鞭毛虫的生态分布特点。结果表明:春、夏、秋、冬的微型异养鞭毛虫丰度分别为0.05×103~1.93×103,0.03×103~2.65×103,0.09×103~2.05×103和0.04×103~1.84×103cells/mL,生物量(以碳计)分别为0.56~19.50,0.04~24.11,0.96~14.80和0.29~22.26μg/L。4个季节的微型异养鞭毛虫丰度均以2~5μm粒级的为主,其所占比例超过65%,10~20μm粒级所占比例通常低于10%。在水平分布上,微型异养鞭毛虫的丰度随离岸距离的增加逐渐降低;在垂直分布上,微型异养鞭毛虫的丰度随深度的增加逐渐降低,但夏季微型异养鞭毛虫丰度的高值多出现在次表层叶绿素a极大值层(DCM层)。微型异养鞭毛虫的丰度分布受到多重因素的交互影响,并且其所受调控模式在不同季节存在差异:春季和秋季微型异养鞭毛虫主要受下行调控;夏季微型异养鞭毛虫主要受上行调控;冬季上行和下行调控对微型异养鞭毛虫的影响相近。

References

[1]  Patterson D J, Larsen J.The biology of free-living heterotrophic flagellates[M].Oxford: Clarendon Press, 1991.
[2]  蓝文陆.南海典型海域微型鞭毛虫的生态学研究[D].厦门: 厦门大学, 2008.
[3]  黄凌风, 潘科, 郭丰, 等. 我国海洋微型异养鞭毛虫研究: 现状与展望[J].厦门大学学报(自然科学版),2006(S2): 62-67.
[4]  Wikner J, Rassoulzadegan F, Hagstr?m ?.Periodic bacterivore activity balances bacterial growth in the marine environment[J].Limnol Oceanogr, 1990, 35(2): 313-324.
[5]  Sherr E B, Sherr B F.Significance of predation by protists in aquatic microbial food webs[J].Antonie van Leeuwenhoek, 2002, 81: 293-308.
[6]  Christaki U, Courties C, Karayanni H, et al.Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates[J].Microb Ecol, 2002, 43(3): 341-352.
[7]  Lin Y C, Tsai A Y, Chiang K P.Trophic coupling between Synechococcus and pigmented nanoflagellates in the coastal waters of Taiwan, Western Subtropical Pacific[J].J Oceanogr, 2009, 65(6): 781-789.
[8]  Granda A P, Anadón álvarez R.The annual cycle of nanoflagellates in the Central Cantabrian Sea (Bay of Biscay)[J].J Marine Syst, 2008, 72(1): 298-308.
[9]  Sheldon R W, Nival P, Rassoulzadegan F.An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis[J].Limnol Oceanogr, 1986, 31(1): 184-188.
[10]  Sato M, Yoshikawa T, Takeda S, et al.Application of the size-fractionation method to simultaneous estimation of clearance rates by heterotrophic flagellates and ciliates of pico-and nanophytoplankton[J].J Exp Mar Biol Ecol, 2007, 349(2): 334-343.
[11]  Sinistro R.Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland[J].J Plankton Res, 2010, 32(2): 209-220.
[12]  Gao Y, Zeng C K, Guo Y J.Some new species of nannoplankton in Jiaozhou Bay, Shandong, China[J].Chinese Journal of Oceanology and Limnology, 1993, 11(2): 108-116.
[13]  Gorsky G, da Silva L, Dallot S, et al.Midwater tunicates: Are they related to the permanent front of the Ligurian Sea(NW Mediterranean)?[J].Marine ecology progress series Oldendorf, 1991, 74(2): 195-204.
[14]  Tsai A Y, Gong G C, Sanders R W, et al.The impact of the Changjiang River plume extension on the nanoflagellate community in the East China Sea[J].Estuar Coast Shelf Sci, 2010, 89(1): 21-30.
[15]  Tsai A Y, Chiang K P, Chang J, et al.Seasonal variations in trophic dynamics of nanoflagellates and picoplankton in coastal waters of the western subtropical Pacific Ocean[J].Aquat Microb Ecol, 2008, 51(3): 263-274.
[16]  Tsai A Y, Gong G C, Chiang K P, et al.Temporal and spatial variations of picoplankton and nanoplankton and short-term variability related to stormy weather in the Danshui River estuary in northern Taiwan[J].Terr Atmos Ocean Sci, 2011, 22(1): 79-89.
[17]  林元烧,罗文新,曹文清,等.台湾海峡异养性鞭毛虫生态研究:Ⅰ.1997.年夏季南部海域鞭毛虫丰度及生物量分布[J].厦门大学学报(自然科学版),2001,40(3):798-803.
[18]  Huang B, Lan W, Cao Z, et al.Spatial and temporal distribution of nanoflagellates in the northern South China Sea[J].Hydrobiologia, 2008, 605(1): 143-157.
[19]  魏泽勋, 方国洪, 何宜军, 等. 南海海面高度和输运流函数: 全球变网格模式结果[J].中国科学(D辑:地球科学), 2002, (12): 987-994.
[20]  Sanders R W, Berninger U G, Lim E L, et al.Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank[J].Mar Ecol Prog Ser, 2000, 192: 103-118.
[21]  黄凌风, 郭丰, 黄邦钦, 等. 初夏黄海中部和北部海洋鞭毛虫的分布特征及其影响因素[J].海洋学报, 2003,25 (S2): 82-87.
[22]  Lagus A, Suomela J, Weithoff G, et al.Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea[J].J Plankton Res, 2004, 26(7): 779-798.
[23]  Vaqué D, Gasol J M, Marrasé C.Grazing rates on bacteria: the significance of methodology and ecological factors[J].Mar Ecol Prog Ser, 1994, 109: 263-274.
[24]  Marrasé C, Lim E L, Caron D A.Seasonal and daily changes in bacterivory in a coastal plankton community[J].Mar Ecol Prog Ser, 1992, 82(3): 281-289.
[25]  ?oli? M, Krstulovi? N, Bojani? N, et al.Seasonal switching between relati
[26]  潘科. 海洋异养鞭毛虫摄食与生长的实验生态学研究[D].厦门:厦门大学, 2006.
[27]  Stoecker D K, Capuzzo J M.Predation on protozoa: its importance to zooplankton[J].J Plankton Res, 1990, 12(5): 891-908.
[28]  Sanders R W, Wickham S A.Planktonic protozoa and metazoa: predation, food quality and population control[J].Aquat Microb Ecol, 1993, 7(2): 197-223.
[29]  Jeong H J, Song J E, Kang N S, et al.Feeding by heterotrophic dinoflagellates on the common marine heterotrophic nanoflagellate Cafeteria sp.[J].Mar Ecol Prog Ser, 2007, 333: 151-160.
[30]  Sun J, Liu D.Geometric models for calculating cell biovolume and surface area for phytoplankton[J].J Plankton Res, 2003, 25(11): 1331-1346.
[31]  Bφrsheim K Y, Bratbak G.Cell volume to cell carbon conversion factors for a bacterivorous Monas sp.enriched from seawater[J].Mar Ecol Prog Ser, 1987, 36(17): 171-175.
[32]  Boenigk J, Arndt H.Bacterivory by heterotrophic flagellates: community structure and feeding strategies[J].Antonie van Leeuwenhoek, 2002, 81: 465-480.
[33]  Sherr E B, Sherr B F.Understanding roles of microbes in marine pelagic food webs: a brief history[C]//Kirchman D L.Microbial Ecology of the Oceans.Hoboken: John Wiley & Sons, 2008: 27-44.
[34]  Dennett M R, Caron D A, Murzov S A, et al.Abundance and biomass of nano-and microplankton during the 1995 Northeast Monsoon and Spring Intermonsoon in the Arabian Sea[J].Deep-Sea Res PartⅡ, 1999, 46: 1691-1717.
[35]  郝锵, 宁修仁, 蔡昱明, 等. 南海北部初级生产力的物理-生物海洋学耦合特征及其对固碳量的影响[J].海洋学研究, 2011, 瘲改?椲洩瀺漠爴琶愭渵挷攮?潢晲 ̄扛漳琱瑝漠浃?畲灩?慴湡摫?琠潕瀬?摖潡睮渠?捡潭湢瑥牫潥氠?漬映?扯慬捡瑮攠牊椠慒氮?慡湮摯?桬敡瑧敥牬潬瑡牴潥灳栠椨捭?湸慯湴潲景汰慨杳攬氠汨慥瑴敥?慯扴畲湯摰慨湳挠敡孮?崠????慴牲??楨潳氩漠杩??獴獨潥挠?啬????????????????????????erranean: standing stocks, bacterivory and relationships with bacterial production[J].Mar Ecol Prog Ser, 1999, 181: 297-307.
[36]  庞海龙.珠江冲淡水扩散路径分析[D].青岛:中国海洋大学, 2006.
[37]  袁梁英.南海北部营养盐结构特征[D].厦门:厦门大学, 2005.
[38]  ?estanovi? S, ?oli? M, Krstulovi? N, et al.Seasonal and vertical distribution of planktonic bacteria and heterotrophic nanoflagellates in the middle Adriatic Sea[J].Helgol Mar Res, 2004, 58(2): 83-92.
[39]  Caron D A, Lim E L, Miceli G, et al.Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community[J].Mar Ecol Prog Ser, 1991, 76(3): 205-217.
[40]  朱致盛, 林施泉, 黄凌风, 等. 黄海冷水团海域微型异养鞭毛虫对异养细菌和蓝细菌摄食作用的初步研究[J].海洋学报, 2009,31 (5): 123-131.
[41]  Guillou L, Jacquet S, Chrétiennot-Dinet M J, et al.Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus[J].Aquat Microb Ecol, 2001, 26(2): 201-207.
[42]  Gasol J M.A framework for the assessment of top-down versus bottom-up control of heterotrophic nanoflagellate abundance[J].Mar Ecol Prog Ser, 1994, 113(3): 291-300.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133