全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国对虾(Fenneropenaeuschinensis)多性状复合育种方案的遗传和经济评估

DOI: 10.3969/j.issn.02534193.2013.02.014, PP. 133-142

Keywords: 多性状复合育种,选择反应,遗传进展,利润,效益成本比率

Full-Text   Cite this paper   Add to My Lib

Abstract:

设计中国对虾Fenneropenaeuschinensis多性状复合育种方案,模拟选择20个世代,预测和评估目标性状(收获体重(BW),存活率(SR)和饲料摄入量(FI))的遗传进展及经济效益。利用选择指数理论,估计目标性状的选择反应和遗传进展;通过三级金字塔传递系统(核心群、扩繁群和生产群)放大遗传进展并计算其经济效益;对影响利润(RP)和效益成本比率(BCR)的生物学参数(遗传力、育种目标是否包括FI),经济学参数(对虾价格、饲料价格、贴现率、初投资、年费用)和运行参数(首次回报年份、扩繁效率)进行敏感性分析。结果表明,在基础参数值下,BW、SR和FI每个世代的选择反应分别为0.81g、1.41%和1.30g;以1000尾虾为单位计算,BW、SR和FI的经济加权值分别为32元,20元和-8元,育种目标的遗传进展为43.69元,育种方案执行20年产生的RP和BCR分别为8660.99万元和14.34。敏感性分析显示,生物学参数中,目标性状遗传力变化对RP和BCR影响程度中等,遗传力值越高,RP和BCR越大;将FI经济加权值设为0,育种方案的RP和BCR明显高于基础参数。经济学参数中,对虾价格的变化对RP和BCR影响较大;饲料价格、贴现率和年费用的变化对RP和BCR影响较小,但初投资变化对BCR影响较大。运行参数中,首次回报年份越晚,RP和BCR越低。扩繁效率是影响RP和BCR的最重要因素。高扩繁效率下,生产群规模扩大1736.15%,RP和BCR分别提高1866.92%和1736.75%。

References

[1]  Gjedrem T. The first family-based breeding program in aquaculture[J]. Reviews in Aquaculture, 2010, 2(1): 2—15.
[2]  Thodesen J, Grisdale-Helland B, Helland S J, et al. Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon(Salmo salar)[J]. Aquaculture, 1999, 180(3/4): 237—246.
[3]  Harris D L, Newman S. Breeding for profit: synergism between genetic improvement and livestock production (a review)[J]. Journal of animal science, 1994, 72(8): 2178.
[4]  黄锡霞. 超细型细毛羊优化育种规划的研究. 北京: 中国农业大学, 2005.
[5]  Hill W G. Prediction and evaluation of response to selection with overlapping generations[J]. Animal Production, 1974, 18(2): 117—139.
[6]  Gjedrem T, Baranski M. Selective Breeding in Aquaculture: An Introduction[M]. Dordrecht Heidelberg London New York: Springer, 2009.
[7]  Ponzoni R W, Nguyen H N, Khaw H L. Investment appraisal of genetic improvement programs in Nile tilapia[J]. Aquaculture, 2007, 269(1/4): 187—199.
[8]  Ponzoni R W, Nguyen N H, Khaw H L, et al. Accounting for genotype by environment interaction in economic appraisal of genetic improvement programs in common carp Cyprinus carpio[J]. Aquaculture, 2008, 285(1/4): 47—55.
[9]  杨翠华. 中国对虾与抗性相关性状的遗传学参数分析. 青岛: 中国海洋大学, 2007.
[10]  张沅. 家畜育种规划[M]. 北京: 中国农业大学出版社, 2000.
[11]  曹洪战. 优质猪选育方案优化研究. 北京: 中国农业大学, 2003.
[12]  李俊雅. 中国西门塔尔牛开放核心群优化育种规划的研究. 北京: 中国农业大学, 2002.
[13]  Bulmer M G. The effect of selection on genetic variability[J]. The American Naturalist, 1971, 105(943): 201—211.
[14]  Meuwissen T H E. Reduction of selection differentials in finite populations with a nested full-half sib family structure[J]. Biometrics, 1991, 47(1): 195—203.
[15]  Neely K G, Myers J M, Hard J J, et al. Comparison of growth, feed intake, and nutrient efficiency in a selected strain of coho salmon (Oncorhynchus kisutch) and its source stock[J]. Aquaculture, 2008, 283(1): 134—140.
[16]  Thodesen J, Grisdale-Helland B, Helland S J, et al. Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon (Salmo salar)[J]. Aquaculture, 1999, 180(3/4): 237—246.
[17]  Mambrini M, Labb E L, Randriamanantsoa F, et al. Response of growth-selected brown trout (Salmo trutta) to challenging feeding conditions[J]. Aquaculture, 2006, 252(2): 429—440.
[18]  Poutous M, Vissac B. Recherche théorique des conditions de rentabilité maximum de l\'épreuve de descendance des taureaux d\'insémination artificielle[J]. Annl Zootech, 1962, 11: 233—256.
[19]  Bird P, Mitchell G, Others. The choice of discount rate in animal breeding investment appraisal[J]. Animal breeding abstracts, 1980, 48(8): 499—505.
[20]  农业部渔业局. 2011年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2011.
[21]  Gjedrem T. The first family-based breeding program in aquaculture[J]. Reviews in Aquaculture, 2010, 2(1): 2—15.
[22]  Khaw H L, Ponzoni R W, Danting M J C. Estimation of genetic change in the GIFT strain of Nile tilapia (Oreochromis niloticus) by comparing contemporary progeny produced by males born in 1991 or in 2003[J]. Aquaculture, 2008, 275(1/4): 64—69.
[23]  孟宪红. 中国对虾"黄海2号"对WSSV的抗病性分析. 青岛: 中国海洋大学, 2010.
[24]  Hazel L N. The genetic basis for constructing selection indices[J]. Genetics, 1943, 28(6): 476—490.
[25]  Argue B J, Arce S M, Lotz J M, et al. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus[J]. Aquaculture, 2002, 204(3/4): 447—460.
[26]  张天时. 中国对虾(Fenneropenaeus chinensis)育种的模型分析与遗传参数评估. 青岛: 中国海洋大学, 2010.
[27]  田燚,孔杰,杨翠华. 中国对虾 2 个群体杂交子一代生长和存活率比较[J]. 科学通报, 2006, 51(15): 1771—1774.
[28]  栾生,孔杰,张天时,等. 基于表型值和育种值的中国对虾生长、抗逆性状相关分析[J]. 海洋水产研究, 2008, 29(3): 14—20.
[29]  Rutten M, Bijma P, Woolliams J A, et al. SelAction: Software to predict selection response and rate of inbreeding in livestock breeding programs[J]. Journal of Heredity, 2002, 93(6): 456—458.
[30]  Harris D L. Breeding for efficiency in livestock production: defining the economic objectives[J]. Journal of Animal Science, 1970, 30(6): 860—865.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133