全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微型异养鞭毛虫摄食选择性的研究进展

DOI: 10.3969/j.issn.02534193.2013.02.001, PP. 1-8

Keywords: 微型异养鞭毛虫,微微型浮游生物,异养细菌,摄食选择性

Full-Text   Cite this paper   Add to My Lib

Abstract:

微型异养鞭毛虫(HNF)是海洋微微型浮游生物的重要摄食者,通过摄食作用对后者的种类(或类群)组成、粒径分布、数量结构和营养价值等属性具有重要的影响,而这与HNF的摄食选择性有直接关系。对HNF摄食选择性的研究有助于深入了解HNF在海洋微食物环乃至整个海洋生态系统中的作用。就国际上已开展的HNF摄食选择性相关研究进行了回顾,分析和总结了影响HNF选择性摄食的关键因素,如食物大小、游动性、营养价值及食物细胞表面的生化结构特征等,并重点介绍了HNF摄食选择性形成的主要机制以及HNF的选择性摄食在调节海洋微微型浮游生物群落结构中的作用。

References

[1]  黄凌风, 郭丰. 微食物环及其在能流,物流过程中的作用[M]//唐启升, 苏纪兰. 中国海洋生态系统动力学研究:关键科学问题与研究发展战略. 北京: 科学出版社, 2000: 212—217.
[2]  黄凌风, 潘科, 郭丰, 等. 异养性海洋鞭毛虫摄食生态学研究进展[J]. 海洋科学, 2006, 30(4): 78—82.
[3]  Montagnes D J S, Barbosa A B, Boenigk J, et al. Selective feeding behaviour of key free-living protists: avenues for continued study[J]. Aquat Microb Ecol, 2008, 53(1): 83—98.
[4]  Christaki U, Vázquez-Domínguez E, Courties C, et al. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus)[J]. Environ Microbiol, 2005, 7(8): 1200—1210.
[5]  Fenchel T. Flagellate design and function[M]//Patterson D J, Larsen J. Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists. Madison: Science Tech Publishers, 1987: 7—19.
[6]  Hansen B W, Bjrnsen P K, Hansen P J. The size ratio between planktonic predators and their prey[J]. Limnol Oceanogr, 1994, 39(2): 395—403.
[7]  Hahn M W, H?fle M G. Grazing of protozoa and its effect on populations of aquatic bacteria[J]. FEMS Microbiol Ecol, 2001, 35(2): 113—121.
[8]  Fenchel T. Eppur si muove: many water column bacteria are motile[J]. Aquat Microb Ecol, 2001, 24(2): 197—201.
[9]  Mitchell J G, Pearson L, Dillon S, et al. Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations[J]. Appl Environ Microbiol, 1995, 61(12): 4436—4440.
[10]  Monger B C, Landry M R. Size-selective grazing by heterotrophic nanoflagellates: an analysis using live-stained bacteria and dual-beam flow cytometry[J]. Arch Hydrobiol Beih Ergebn Limnol, 1992, 37: 173—185.
[11]  González J M, Sherr E B, Sherr B F. Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile, bacterial prey[J]. Mar Ecol Prog Ser, 1993, 102: 257—267.
[12]  Matz C, Boenigk J, Arndt H, et al. Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. [J]. Aquat Microb Ecol, 2002, 27(2): 137—148.
[13]  Matz C, Jürgens K. High motility reduces grazing mortality of planktonic bacteria[J]. Appl Environ Microbiol, 2005, 71(2): 921—929.
[14]  Jürgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria[J]. Antonie van Leeuwenhoek, 2002, 81: 413—434.
[15]  Boenigk J, Matz C, Jürgens K, et al. The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates[J]. Microb Ecol, 2001, 42(2): 168—176.
[16]  Davidson K, Roberts E C, Wilson A M, et al. The role of prey nutritional status in governing protozoan nitrogen regeneration efficiency[J]. Protist, 2005, 156(1): 45-62.
[17]  Vázquez-Domínguez E, Casamayor E O, Catal P, et al. Different marine heterotrophic nanoflagellates affect differentially the composition of enriched bacterial communities[J]. Microb Ecol, 2005, 49(3): 474—485.
[18]  Shannon S P, Chrzanowski T H, Grover J P. Prey food quality affects flagellate ingestion rates[J]. Microb Ecol, 2007, 53(1): 66—73.
[19]  Sterner R W. Daphnia growth on varying quality of Scenedesmus: mineral limitation of zooplankton[J]. Ecology, 1993, 74(8): 2351—2360.
[20]  Jürgens K, Demott W R. Behavioral flexibility in prey selection by bacterivorous nanoflagellates[J]. Limnol Oceanogr, 1995, 40(8): 1503—1507.
[21]  John E H, Davidson K. Prey selectivity and the influence of prey carbon:nitrogen ratio on microflagellate grazing[J]. J Exp Mar Biol Ecol, 2001, 260(1): 93—111.
[22]  Sibbald M J, Albright L J, Sibbald P R. Chemosensory responses of a heterotrophic microflagellate to bacteria and several nitrogen compounds[J]. Mar Ecol Prog Ser, 1987, 36: 201—204.
[23]  Ederington M C, Mcmanus G B, Harvey H R. Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acartia tonsa[J]. Limnol Oceanogr, 1995, 40(5): 860—867.
[24]  Wolfe G V. The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts[J]. Biol Bull, 2000, 198(2): 225-244.
[25]  Hahn M W, Moore E R, H?fle M G. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla[J]. Appl Environ Microbiol, 1999, 65(1): 25—35.
[26]  González J M, Iriberri J, Egea L, et al. Differential rates of digestion of bacteria by freshwater and marine phagotrophic protozoa[J]. Appl Environ Microbiol, 1990, 56(6): 1851—1857.
[27]  Roberts E C, Wootton E C, Davidson K, et al. Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms[J]. J Plankton Res, 2011, 33(4): 603—614.
[28]  Hartz A J, Sherr B F, Sherr E B. Using inhibitors to investigate the involvement of cell signaling in predation by marine phagotrophic protists[J]. J Eukaryot Microbiol, 2008, 55(1): 18—21.
[29]  Güde H. Grazing by protozoa as selection factor for activated sludge bacteria[J]. Microb Ecol, 1979, 5(3): 225—237.
[30]  Hahn M W, H?fle M G. Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures[J]. Appl Environ Microbiol, 1998, 64(5): 1910—1918.
[31]  Hahn M W, H?fle M G. Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size,and bacterial community composition[J]. Appl Environ Microbiol, 1999, 65(11): 4863—4872.
[32]  Jürgens K, Pernthaler J, Schalla S, et al. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing[J]. Appl Environ Microbiol, 1999, 65(3): 1241—1250.
[33]  ?imek K, Kojeck P, Nedoma J, et al. Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir[J]. Limnol Oceanogr, 1999, 44(7): 1634—1644.
[34]  Van Hannen E J, Veninga M, Jaap B, et al. Genetic changes in the bacterial community structure associated with protistan grazers[J]. Arch Hydrobiol, 1999, 145(1): 25—38.
[35]  ?imek K, Vrba J, Pernthaler J, et al. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes[J]. Appl Environ Microbiol, 1997, 63(2): 587—595.
[36]  Pernthaler J, Posch T, ?imek K, et al. Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture[J]. Appl Environ Microbiol, 2001, 67(5): 2145—2155.
[37]  Guillou L, Jacquet S, Chr Tiennot-Dinet M-J, et al. Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus[J]. Aquat Microb Ecol, 2001, 26(2): 201—207.
[38]  Patterson D J, Larsen J. The biology of free-living heterotrophic flagellates[M]. Oxford: Clarendon Press, 1991.
[39]  Pernthaler J. Predation on prokaryotes in the water column and its ecological implications[J]. Nat Rev Microbiol, 2005, 3(7): 537-546.
[40]  Zwirglmaier K, Spence E, Zubkov M V, et al. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains[J]. Environ Microbiol, 2009, 11(7): 1767—1776.
[41]  Sherr E B, Sherr B F. Significance of predation by protists in aquatic microbial food webs[J]. Antonie van Leeuwenhoek, 2002, 81: 293—308.
[42]  Martín-Cereceda M, Williams R A J, Novarino G. Easy visualization of the protist Oxyrrhis marina grazing on a live fluorescently labelled heterotrophic nanoflagellate[J]. Curr Microbiol, 2008, 57(1): 45—50.
[43]  Sleigh M A. Trophic strategies[M]//Leadbeater B S C, Green J C. The Flagellates: Unity, Diversity and Evolution. London: Taylor & Francis, 2000: 147—165.
[44]  Marchant H J, Scott F J. Uptake of sub-micrometre particles and dissolved organic material by Antarctic choanoflagellates[J]. Mar Ecol Prog Ser, 1993, 92: 59—59.
[45]  Boenigk J, Arndt H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies[J]. Antonie van Leeuwenhoek, 2002, 81: 465—480.
[46]  Andersson A, Larsson U, Hagstr M ?. Size-selective grazing by a microflagellate on pelagic bacteria[J]. Mar Ecol Prog Ser, 1986, 33: 51—57.
[47]  Holen D A, Boraas M E. The feeding behavior of Spumella sp. as a function of particle size: implications for bacterial size in pelagic systems[J]. Hydrobiologia, 1991, 220(1): 73—88.
[48]  Monger B C, Landry M R. Prey-size dependency of grazing by free-living marine flagellates[J]. Mar Ecol Prog Ser, 1991, 74: 239—248.
[49]  Epstein S S, Shiaris M P. Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates, and ciliates[J]. Microb Ecol, 1992, 23(3): 211—225.
[50]  González J M. Efficient size-selective bacterivory by phagotrophic nanoflagellates in aquatic ecosystems[J]. Mar Biol, 1996, 126(4): 785—789.
[51]  Pernthaler J, Sattler B, ?imek K, et al. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community[J]. Aquat Microb Ecol, 1996, 10(3): 255—263.
[52]  Flynn K J, Davidson K, Cunninghamb A. Prey selection and rejection by a microflagellate; implications for the study and operation of microbial food webs[J]. J Exp Mar Biol Ecol, 1996, 196(1): 357—372.
[53]  Matz C, Jürgens K. Effects of hydrophobic and electrostatic cell surface properties of bacteria on feeding rates of heterotrophic nanoflagellates[J]. Appl Environ Microbiol, 2001, 67(2): 814—820.
[54]  Matz C, Deines P, Boenigk J, et al. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates[J]. Appl Environ Microbiol, 2004, 70(3): 1593—1599.
[55]  Deines P, Matz C, Jürgens K. Toxicity of violacein-producing bacteria fed to bacterivorous freshwater plankton[J]. Limnol Oceanogr, 2009, 54(4): 1343—1352.
[56]  Boenigk J, Stadler P, Wiedlroither A, et al. Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster[J]. Appl Environ Microbiol, 2004, 70(10): 5787—5793.
[57]  Roberts E C, Legrand C, Steinke M, et al. Mechanisms underlying chemical interactions between predatory planktonic protists and their prey[J]. J Plankton Res, 2011, 33(6): 833—841.
[58]  Boenigk J, Arndt H. Particle handling during interception feeding by four species of heterotrophic nanoflagellates[J]. J Eukaryot Microbiol, 2000, 47(4): 350—358.
[59]  Pfandl K, Posch T, Boenigk J. Unexpected effects of prey dimensions and morphologies on the size selective feeding by two bacterivorous flagellates (Ochromonas sp. and Spumella sp.)[J]. J Eukaryot Microbiol, 2004, 51(6): 626—633.
[60]  Wootton E C, Zubkov M V, Jones D H, et al. Biochemical prey recognition by planktonic protozoa[J]. Environ Microbiol, 2007, 9(1): 216—222.
[61]  Posch T, ?imek K, Vrba J, et al. Predator-induced chancres of bacterial size-structure and productivity studied on an experimental microbial community[J]. Aquat Microb Ecol, 1999, 18(3): 235—246.
[62]  Sherr B F, Sherr E B, Mcdaniel J. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages[J]. Appl Environ Microbiol, 1992, 58(8): 2381—2385.
[63]  Verhagen F J M, Laanbroek H J. Effects of grazing by flagellates on competition for ammonium between nitrifying and heterotrophic bacteria in chemostats[J]. Appl Environ Microbiol, 1992, 58(6): 1962—1969.
[64]  ?imek K, Macek M, Seda J, et al. Possible food chain relationships between bacterioplankton, protozoans, and cladocerans in a reservoir[J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 1990, 75(5): 583—596.
[65]  Del Giorgio P A, Gasol J M, Vaqué D, et al. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community[J]. Limnol Oceanogr, 1996, 41(6): 1169—1179.
[66]  González J M, Sherr E B, Sherr B F. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates[J]. Appl Environ Microbiol, 1990, 56(3): 583—589.
[67]  Jürgens K, Güde H. The potential importance of grazing-resistant bacteria in planktonic systems[J]. Mar Ecol Prog Ser, 1994, 112: 169—188.
[68]  Pernthaler J, Posch T, ?imek K, et al. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage[J]. Appl Environ Microbiol, 1997, 63(2): 596—601.
[69]  Christaki U, Courties C, Karayanni H, et al. Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates[J]. Microb Ecol, 2002, 43(3): 341—352.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133