全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

江苏盐城滨海湿地食物网的初步研究

DOI: 10.3969/j.issn.0253-4193.2013.01.017, PP. 149-157

Keywords: 碳同位素,氮同位素,江苏盐城滨海湿地,食物网

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用稳定同位素方法分析了盐城滨海湿地生态系统中部分生物的食物来源,示踪了食物网的主要碳流途径,提出了估算消费者的营养级的新模型并进行了相应计算,最终构建了江苏滨海湿地简化食物网模型。主要结论:(1)主要初级生产者的δ13C介于-28.856×10-3与-10.952×10-3之间,δ15N介于1.219×10-3与6.496×10-3之间,均具有显著差异,消费者个体的δ13C介于-27.564×10-3与-11.641×10-3之间,δ15N介于4.462×10-3至10.339×10-3之间;(2)研究区生态系统可以划分成潮间带和潮上带两个亚生态系统,其中潮上带的主要食物源为芦苇,潮间带的主要食物源为互花米草及微体藻类,盐蒿对两个亚生态系统都有一定的食物贡献率,但均不高。(3)研究区的大型底栖生物及草食性哺乳类大部分占据第二营养级;(4)研究区动物可以划分为8个主要功能类群,即植食性哺乳类、植食性昆虫、鸟类、淡水游泳类、咸水鱼类、底内动物、底上动物以及浮游动物。总之,潮间带动物比潮上带动物的食物组成多样性略高,与研究区域的生物多样性基本吻合。另外,潮间带生物的食物竞争十分激烈,光滩上分布有一定重叠的优势种并存在一定的食物生态位分化。

References

[1]  蔡德陵, 洪旭光, 毛兴华, 等. 崂山湾潮间带食物网结构的碳稳定同位素初步研究[J].海洋学报, 2001, 23(4): 41-47.
[2]  易现峰, 张晓爱, 李来兴, 等. 高寒草甸生态系统食物链结构分析——来自稳定性碳同位素的证据[J]. 动物学研究, 2003, 25(1): 1-6.
[3]  全为民. 长江口盐沼湿地食物网的初步研究: 稳定同位素分析. 上海:复旦大学, 2007.
[4]  国家环保局自然生态保护司. 中国自然保护区名录 [M]. 北京: 中国环境科学出版社, 1998.
[5]  Goering J V, Alexander V, Haubenstock N. Seasonal variability of organism in a North Pacific bay[J]. Estuarine Coastal Shelf, 1990, 30(3): 239-260.
[6]  Bunn S E, Lomeragan N R, Kempster M A. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food web studies using multiple stable isotopes[J]. Limnol Oceanog, 1995, 40(3): 622-625.
[7]  Peterson B J, Fry B. Stable isotopes in ecosystem studies[J]. Annual Reviews of Ecological System, 1997, 18: 291-320.
[8]  Currin C A, Newell S Y, Paerl H W. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis[J]. Marince Ecology Progress Series, 1995, 121: 99-116.
[9]  Cabana G, Rasmussen J B. Comparison of aquatic food chains using nitrogen isotopes[J]. Proc Natl Acad Sci USA Progress, 1996, 93(20): 10844-10847.
[10]  Schoener T W. Nonsynchronous spatial overlap of lizard in patchy habitats[J]. Ecology, 1970, 51: 408-418.
[11]  孙儒泳. 动物生态学原理(第2版)[M]. 北京: 北京师范大学出版社, 1992: 335-336.
[12]  Bray T R, Curtis J T. An ordination of the upland forest communities of southern Wisconsin[J]. Ecol Monogr, 1957, 27: 325-349.
[13]  高建华,杨桂山,欧维新.苏北潮滩湿地不同生态带有机质来源辨析与定量估算[J].环境科学,2005,26(6): 51-56.
[14]  Sullivan M J, Moncreiff C A. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses[J]. Marine Ecology Progress Series, 1990, 62: 149-159.
[15]  Zanden M J V, Rasmussen J B. Primary consumer δ13C and δ15N and trophic position of aquatic consumers[J]. Ecology, 1999, 80: 1395-1404.
[16]  Kidd K A, Schindler D W, Hesslein R H, et al. Correlation between stable nitrogen isotope ratios and concentrations of organochlorines in biota from a freshwater food web[J]. The Science of the Total Environment, 1995, 160/161: 381-390.
[17]  郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000: 1-316.
[18]  王建柱, 林光辉, 黄建辉, 等. 稳定同位素在陆地生态系统动-植物相互关系研究中的应用[J]. 科学通报, 2004, 49(21): 2141-2149.
[19]  林光辉. 稳定同位素生态学: 先进技术推动的生态学新分支[J]. 植物生态学报, 2010, 34(2): 119-122.
[20]  商栩, 管卫兵, 张国森, 等. 互花米草入侵对河口盐沼湿地食物网的影响[J]. 海洋学报, 2009, 31(1): 132-142.
[21]  Ludwig J A, Reynolds J F. Statistical Ecology[M]. New York: John Wiley & Sons, Inc, 1988.
[22]  Dickman C R. Niche compression: two tests of an hypothes is using narrow lysympatic predator species[J]. Australian Journal of Ecology, 1986, 11: 121-134.
[23]  Pianka E R. The structure of lizard communities[J]. Annu Rev Ecol Syst, 1973, 4: 53-74.
[24]  Howarth R W. Microbial processes in salt-marsh sediments[J]. Aquatic Microbiology, 1993: 239-261.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133