全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同适温海洋富油微藻在富碳培养条件下的油脂积累特性研究

DOI: 10.3969/j.issn.0253-4193.2014.12.004, PP. 41-52

Keywords: 海洋富油微藻,富碳培养,中性脂,油脂积累

Full-Text   Cite this paper   Add to My Lib

Abstract:

本实验分别针对3株低温藻株:微拟球藻Nannochloropsissp.ZL-12、四爿藻TetraselmischuiZL-33和小球藻Chlorellasp.ZL-45,3株中温藻株:球等鞭金藻IsochrysisgalbanaCCMM5001、等鞭金藻Isochrysissp.CCMM5002和微拟球藻Nannochloropsissp.CCMM7001,3株高温藻株:微拟球藻Nannochloropsissp.JN1、绿色巴夫藻PavlovaviridisJN2和海洋小球藻Chlorellasp.JN3,研究了在通入0.03%(空气)、5%、10%3个CO2浓度梯度条件下的生长特性,同时考察了其总酯及中性脂的累积情况。结果显示,富碳培养有利于不同温度条件下9株藻株的生长,除微拟球藻Nannochloropsissp.CCMM7001最适生长的CO2浓度为5%外,其余8株藻株最适生长的CO2浓度均为10%。在低温和高温条件下,6株海洋富油微藻在通入10%CO2时具有最大生物量产率,在中温条件下球等鞭金藻和等鞭金藻在通入10%CO2时获得最大生物量产率,而微拟球藻在通入5%时获得最大生物量产率,随着CO2浓度的增加,9株藻株的总脂含量和中性脂含量有明显提高。低温和中温藻株的总脂含量高于高温藻株的总脂含量,从中性脂的累积规律来看,9株藻株均在平台期的累积达到最大值,GC-MS分析结果表明,9株微藻适合制备生物柴油的C14~C18系脂肪酸相对含量在不同CO2条件下基本保持不变,维持在90%左右。实验结果显示,所研究的藻株作为富油高固碳优良藻株,具备用于海洋生物质能耦合CO2减排开发的潜力。

References

[1]  白冰,李小春,刘延锋,等. 中国CO2集中排放源调查及其分布特征[J]. 岩石力学与工程学报,2006,25(1): 2918-2924.
[2]  Guillard R R L,Ryther J H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt,and Detonula confervacea (cleve) Gran[J]. Canadian Journal of Microbiology,1962,8(2): 229-239.
[3]  Huerlimann R,de Nys R,Heimann K. Growth,lipid content,productivity,and fatty acid composition of tropical microalgae for scale-up production[J]. Biotechnology and Bioengineering,2010,107(2): 245-257.
[4]  Tang D H,Han W,Li P L,et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels[J]. Bioresource Technology,2011,102(3): 3071-3077.
[5]  Chen W,Sommerfeld M,Hu Q. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae[J]. Bioresource Technology,2011,102(1): 135-141.
[6]  Chen W,Zhang C W,Song L R,et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae[J]. Journal of Microbiological Methods,2009,77(1): 41-47.
[7]  Kirk J T O. Light and Photosynthesis in Aquatic Ecosystems[M]. Cambridge: Cambridge University Press,1983: 101-105.
[8]  Hu H H,Gao K S. Optimization of growth and fatty acid composition of a unicellular marine picoplankton,Nannochloropsis sp.,with enriched carbon sources[J]. Biotechnology Letters,2003,25(5): 421-425.
[9]  欧阳峥嵘,温小斌,耿亚红,等. 光照强度、温度、pH、盐度对小球藻(Chlorella)光合作用的影响[J]. 武汉植物学研究,2010,28(1): 49-55.
[10]  徐宁,吕颂辉,陈菊芳,等. 温度和盐度对锥状斯氏藻生长的影响[J]. 海洋环境科学,2004,23(3): 36-39.
[11]  高春燕,程丽华,张林,等. 小球藻光生物反应器脱除空气中二氧化碳的研究[J]. 膜科学与技术,2005,25(4): 8-12.
[12]  Kimura K,Yamaoka M,Kamisaka Y. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence[J]. J Microbiol Meth,2004,56(3): 331-338.
[13]  Elsey D,Jameson D,Raleigh B,et al. Fluorescent measurement of microalgal neutral lipids[J]. J Microbiol Meth,2007,68(3): 639-642.
[14]  Tsuzuki M,Ohnuma E,Sato N,et al. Effects of CO2 concentration during growth on fatty acid composition in microalgae[J]. Plant Physiology,1990,93(3): 851-857.
[15]  Boden T A,Marland G,Andres R J. Global,Regional,and National Fossil-Fuel CO2 Emissions[R]. Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,U. S. Department of Energy,Oak Ridge,Tenn. 2012,U. S. A. doi 10. 3334/CDIAC/00001_V2013
[16]  杨忠华,杨改,李方芳,等. 利用微藻固定CO2实现碳减排的研究进展[J]. 生物加工过程,2011,9(1): 66-76.
[17]  Salih F M. Microalgae tolerance to high concentrrations of carbon dioxide: a review[J]. Journal of Environmental Protection,2011,2(5): 648-654.
[18]  Lee Y K,Tay H S. High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture[J]. Journal of Applied Phycology,1991,3(2): 95-101.
[19]  王金娜,严小军,周成旭,等. 产油微藻的筛选及中性脂动态积累过程的检测[J]. 生物物理学报,2010,26(6): 472-480.
[20]  Bligh E G,Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology,1959,37(8): 911-917.
[21]  Sánchez Pérez J A,Rodríguez Porcel E M,Casas López J L,et al. Shear rate in stirred tank and bubble column bioreactors[J]. Chemical Engineering Journal,2006,124(1/3): 1-5.
[22]  Chrismadha T,Borowitzka M A. Effect of cell density and irradiance on growth,proximate composition and eicosapentaenoic acid production ofphaeodactylum tricornutum grown in a tubular photobioreactor[J]. Journal of Applied Phycology,1994,6(1): 67-74.
[23]  Li S Y,Shabtai Y,Arad S. Production and composition of the sulphated cell wall polysaccharide of Porphyridium(Rhodophyta) as affected by CO2 concentration[J]. Phycologia,2000,39(4): 332-336.
[24]  Yue L H,Chen W G. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae[J]. Energy Conversion and Management,2005,46(11/12): 1868-1876.
[25]  Yoon J H,Sim S J,Kim M S,et al. High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen[J]. Inter Hydrogen Energy,2002,27(11/12): 1265-1270.
[26]  Ben-Amotz A,Tomdene T C,Thoms W H. Chemical profile of selected species of Microalgae with emphasis on lipids[J]. J Phycol,1985,21(1): 72-81.
[27]  Liang Y,Mai K S,Sun S C. Total lipid and fatty acid composition of seven Chaetoceros strains[J]. Trans Oceanol Limnol,2000(3): 29-33.
[28]  石娟,潘克厚. 不同培养条件对微藻总脂含量和脂肪酸组成的影响[J]. 海洋水产研究,2004,25(6): 79-86.
[29]  徐进,徐旭东,方仙桃,等. 高产油小球藻的筛选及其油脂分析[J]. 水生生物学报,2012,36(3): 426-433.
[30]  朱顺妮,王忠铭,尚常花,等. 微藻脂肪合成与代谢调控[J]. 化学进展,2011,23(10): 2169-2177.
[31]  魏东,张学成,邹立红,等. 细胞生长时期对两种海洋微藻总脂含量和脂肪酸组成的影响[J]. 青岛海洋大学学报(自然科学版),2000,30(3): 503-509.
[32]  Vargas M A,Rodríguez H,Moreno J,et al. Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria[J]. Journal of Phycology,1998,34(5): 812-817.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133