全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

环境饵料丰度的季节变化对筼筜湖3种大型底栖动物食性的影响——来自稳定同位素的证据

DOI: 10.3969/j.issn.0253-4193.2014.12.003, PP. 32-40

Keywords: 大型底栖动物,季节变化,食性,稳定同位素,筼筜湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

测定了不同时期筼筜湖3种大型底栖动物(沙筛贝Mytilopsissallei、日本大螯蜚Grandidierellajaponica和腺带刺沙蚕Neanthesjaponica)及其潜在食源的稳定同位素组成(δ13C和δ15N),研究环境饵料丰度的季节变化对筼筜湖3种大型底栖动物食性的影响。结果显示,筼筜湖悬浮颗粒有机物(Particulateorganicmatter:POM)的δ13C和δ15N存在明显的季节变化。3月,受到输入筼筜湖的西海域海水大量陆源有机碎屑以及湖区周围的生活污水以及餐饮业输入的影响,筼筜湖POM的δ13C和δ15N明显贫化;而在9月,POM中δ13C和δ15N明显富集的内源性浮游植物的贡献增加。沙筛贝是典型的底栖滤食者,主要以POM为食,但它比POM富集的δ13C值(3月和9月二者之间的Δδ13C分别为2.9‰和1.6‰)表明它还摄入其他δ13C相对富集的食物来源:石莼来源的有机碎屑可能是3月份沙筛贝δ13C富集的原因,而9月份则是由于再悬浮的底栖微藻对沙筛贝食源的贡献引起的。食碎屑的腺带刺沙蚕和日本大螯蜚在3月以石莼及其表面的附生生物为食,而9月份底栖微藻和浮游植物来源的POM是它们食源的主要贡献者。本研究的结果显示,筼筜湖3种大型底栖动物的δ15N都出现明显的季节变化(Δδ15N介于2.2‰~4.3‰),这是由于它们食源稳定同位素的季节性波动及其食性的季节变化引起的,而消费者食性的季节性变化则受到不同时期环境食物可利用性的影响。

References

[1]  Maksymowska D, Richard P, Piekarek-Jankowska H, et al. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea)[J]. Estuarine, Coastal and Shelf Science, 2000, 51(5): 585-598.
[2]  Albertoni E F, Palma-Silva C, Esteves F A. Macroinvertebrates associated with Chara in a tropical coastal lagoon (Imboassica Lagoon, Rio de Janeiro, Brazil)[J]. Hydrobiologia, 2001, 457(1/3): 215-224.
[3]  Kanaya G, Suzuki T, Kikuchi E. Spatio-temporal variations in macrozoobenthic assemblage structures in a river-affected lagoon (Idoura Lagoon, Sendai Bay, Japan): influences of freshwater inflow[J]. Estuarine, Coastal and Shelf Science, 2011, 92(1): 169-179.
[4]  Little C. The Biology of Soft Shores and Estuaries[M]. London: Oxford University Press, 2000.
[5]  林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013.
[6]  Vander Zanden M J, Rasmussen J B. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies[J]. Limnology and Oceanography, 2001, 46(8): 2061-2066.
[7]  Tsuchiya M, Kurihara Y. The feeding habits and food sources of the deposit-feeding polychaete, Neanthes japonica (Izuka)[J]. Journal of Experimental Marine Biology and Ecology, 1979, 36(1): 79-89.
[8]  Yokoyama H, Sakami T, Ishihi Y. Food sources of benthic animals on intertidal and subtidal bottoms in inner Ariake Sound, southern Japan, determined by stable isotopes[J]. Estuarine, Coastal and Shelf Science, 2009, 82(2): 243-253.
[9]  郑新庆, 黄凌风, 王蕾, 等. 筼筜湖大型海藻群落的几种藻栖端足类的种群动态研究[J]. 厦门大学学报 (自然科学版), 2011, 50(5): 928-933.
[10]  Hofmann M, Wolf-Gladrow D A, Takahashi T, et al. Stable carbon isotope distribution of particulate organic matter in the ocean: a model study[J]. Marine Chemistry, 2000, 72(2/4): 131-150.
[11]  Lin H J, Kao W Y, Wang Y T. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan[J]. Estuarine, Coastal and Shelf Science, 2007, 73(3/4): 527-537.
[12]  Currin C A, Newell S Y, Paerl H W. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis[J]. Marine Ecoogy Progress Series, 1995, 121: 99-116.
[13]  Moncreiff C A, Sullivan M J. Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses[J]. Marine Ecology Progress Series, 2001, 215: 93-106.
[14]  Jaschinski S, Brepohl D C, Sommer U. Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses[J]. Marine Ecology Progress Series, 2008, 358: 103-114.
[15]  Gaston T F, Suthers I M. Spatial variation in δ13C and δ15N of liver, muscle and bone in a rocky reef planktivorous fish: the relative contribution of sewage[J]. Journal of Experimental Marine Biology and Ecology, 2004, 304(1): 17-33.
[16]  Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from theTay estuary, Scotland[J]. Estuarine, Coastal and Shelf Science, 1994, 38(3): 219-233.
[17]  Choy E J, Richard P, Kim K-R, et al. Quantifying the trophic base for benthic secondary production in the Nakdong River estuary of Korea using stable C and N isotopes[J]. Journal of Experimental Marine Biology and Ecology, 2009, 382(1): 18-26.
[18]  Haines E B. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh[J]. Estuarine and Coastal Marine Science, 1976, 4(6): 609-616.
[19]  Page H M, Lastra M. Diet of intertidal bivalves in the Ria de Arosa (NW Spain): evidence from stable C and N isotope analysis[J]. Marine Biology, 2003, 143(3): 519-532.
[20]  Martinetto P, Teichberg M, Valiela I. Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Waquoit Bay, Massachusetts, USA[J]. Marine Ecology Progress Series, 2006, 307: 37-48.
[21]  Kanaya G, Nobata E, Toya T, et al. Effects of different feeding habits of three bivalve species on sediment characteristics and benthic diatom abundance[J]. Marine Ecology Progress Series, 2005, 299: 67-78.
[22]  Baeta A, Pinto R, Valiela I, et al. δ15N and δ13C in the Mondego estuary food web: Seasonal variation in producers and consumers[J]. Marine Environmental Research, 2009, 67(3): 109-116.
[23]  Carlier A, Riera P, Amouroux J M, et al. Food web structure of two Mediterranean lagoons under varying degree of eutrophication[J]. Journal of Sea Research, 2008, 60(4): 264-275.
[24]  Cebrian J. Grazing on benthic primary producers[M]// Nielsen S L, Banta G T, Pedersen M F. Estuarine Nutrient Cycling: The Influence of Primary Producers. Netherlands: Springer, 2004: 153-185.
[25]  Fox S E, Teichberg M, Olsen Y S, et al. Restructuring of benthic communities in eutrophic estuaries: lower abundance of prey leads to trophic shifts from omnivory to grazing[J]. Marine Ecology Progress Series, 2009, 380: 43-57.
[26]  Kanaya G, Kikuchi E. Spatial changes in a macrozoobenthic community along environmental gradients in a shallow brackish lagoon facing Sendai Bay, Japan[J]. Estuarine, Coastal and Shelf Science, 2008, 78(4): 674-684.
[27]  Shimoda K, Aramaki Y, Nasuda J, et al. Food sources for three species of Nihonotrypaea (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan, as determined by carbon and nitrogen stable isotope analysis[J]. Journal of Experimental Marine Biology and Ecology, 2007, 342(2): 292-312.
[28]  Doi H, Matsumasa M, Toya T, et al. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses[J]. Estuarine, Coastal and Shelf Science, 2005, 64(2/3): 316-322.
[29]  Kanaya G, Takagi S, Kikuchi E. Spatial dietary variations in Laternula marilina (Bivalva) and Hediste spp. (Polychaeta) along environmental gradients in two brackish lagoons[J]. Marine Ecology Progress Series, 2008, 359: 133-144.
[30]  李娟, 黄凌风, 郭丰, 等. 细基江蓠对氮、磷营养盐的吸收及其对赤潮发生的抑制作用[J]. 厦门大学学报, 2007, 46(2): 221-225.
[31]  郑新庆, 黄凌风, 杜建国, 等. 筼筜湖绿潮期间颗粒有机物及沉积有机物的来源研究[J]. 海洋学报, 2013, 35(5): 102-111.
[32]  Cooper L W, DeNiro M J. Stable carbon isotope variability in the seagrass Posidonia oceanica: Evidence for light intensity effects[J]. Marine Ecology Progress Series, 1989, 50: 225-229.
[33]  Durako M, Hall M. Effects of light on the stable carbon isotope composition of the seagrass Thalassia testudinum[J]. Marine Ecology Progress Series, 1992, 86: 99-101.
[34]  Grice A M, Loneragan N R, Dennison W C. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass[J]. Journal of Experimental Marine Biology and Ecology, 1996, 195(1): 91-110.
[35]  Middelburg J J, Nieuwenhuize J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary[J]. Marine Chemistry, 1998, 60(3/4): 217-225.
[36]  Shang X, Zhang G S, Zhang J. Relative importance of vascular plants and algal production in the food web of a Spartina-invaded salt marsh in the Yangtze River estuary[J]. Marine Ecology Progress Series, 2008, 367: 93-107.
[37]  Carlier A, Riera P, Amouroux J M, et al. A seasonal survey of the food web in the Lapalme Lagoon (northwestern Mediterranean) assessed by carbon and nitrogen stable isotope analysis[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1/2): 299-315.
[38]  Aikins S, Kikuchi E. Grazing pressure by amphipods on microalgae in Gamo Lagoon, Japan[J]. Marine Ecology Progress Series, 2002, 245: 171-179.
[39]  陈红星, 闫启仑, 韩明辅, 等. 室内培养底栖端足类日本大螯蜚饵料研究[J]. 海洋环境科学, 1998, 17(1): 21-25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133