全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

渤海AVHRR多通道海冰密集度反演算法试验研究

DOI: 10.3969/j.issn.0253-4193.2014.11.009, PP. 74-84

Keywords: 渤海,海冰密集度反演,线性光谱混合模型,NOAA/AVHRR,LandSat5-TM

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了得到更精确的渤海海冰密集度反演参数,采用辽东湾不同类型海冰ASD实测数据,在分析光谱特征的基础上,针对NOAA/AVHRR数据确定出合适海冰密集度反演算法阈值。继而,基于线性光谱混合模型的多通道反演算法进行了一系列算法试验。同时实现了基于LandSat5-TM数据的渤海海冰密集度场反演,并利用该结果与AVHRR单通道和多通道算法得到的海冰密集度反演结果进行比对分析。定量误差分析结果表明,当单通道算法或组合算法中包含1通道时,与Landsat5-TM反演结果的平均误差为正值,包含2通道且不包含1通道时,平均误差为负值;同时使用这两个通道较只包含其一的各种组合算法的平均误差明显偏小;在各种组合算法中,1245四个通道组合反演的海冰密集度结果误差最小,可应用于渤海AVHRR数据海冰密集度反演。

References

[1]  白珊,刘钦政,吴辉碇,等. 渤海、北黄海海冰与气候变化的关系[J].海洋学报,2001,23(5):33-41.
[2]  苏洁,郝光华,叶鑫欣,等. 极区海冰密集度AMSR-E数据反演算法的试验和验证[J].遥感学报,2013,17(3):459-513.
[3]  柯长青,谢红接,雷瑞波,等. 北极海冰的光谱特征分析[J].光谱学与光谱分析,2012,32(4):1081-1084.
[4]  郑新江,邱康睦,陆风. 定量计算渤海海冰参数的遥感方法[J].应用气象学报,1998,9(3):359-363.
[5]  罗亚威,张蕴斐,孙从容,等. "海洋 1 号" 卫星在海冰监测和预报中的应用[J].海洋学报,2005,27(1):7-18.
[6]  吴龙涛,吴辉碇,孙兰涛,等.MODIS渤海海冰遥感资料反演[J].中国海洋大学学报,2006,36(2):173-179.
[7]  Stowe L,Davis P A,McClain E P. Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer[J]. Journal of Atmospheric and Oceanic Technology,1999,16(6): 656-681.
[8]  Chander G,Markham B L,Helder D L. Summary of current radiometriccalibration coefficients for Landsat MSS,TM,ETM+,and EO-1 ALI sensors[J]. Remote sensing of environment,2009,113(5): 893-903.
[9]  马开玉,丁裕国,屠其璞,等. 气候统计原理与方法[M]. 北京:气象出版社,1993.
[10]  Steffen K,Maslanik J A. Comparison of Nimbus 7 scanning multichannel microwave radiometer radiance and derived sea ice concentrations with Landsat imagery for the North Water area of Baffin Bay[J]. Journal of Geophysical Research: Oceans (1978-2012),1988,93(C9): 10769-10781.
[11]  Steffen K,Schweiger A. NASA team algorithm for sea ice concentration retrieval from Defense Meteorological Satellite Program special sensor microwave imager: Comparison with Landsat satellite imagery[J]. Journal of Geophysical Research,1991,96(C12): 21971-21987.
[12]  Grenfell T C,Barber D G,Fung A K,et al. Evolution of electromagnetic signatures of sea ice from initial formation to the establishment of thick first-year ice[J]. Geoscience and Remote Sensing,1998,36(5): 1642-1654.
[13]  Light B,Eicken H,Maykut G A,et al. The effect of included participates on the spectral albedo of sea ice[J]. Journal of Geophysical Research: Oceans (1978-2012),1998,103(C12): 27739-27752.
[14]  Gesell G. An algorithm for snow and ice detection using AVHRR data An extension to the APOLLO software package[J]. International Journal of Remote Sensing,1989,10(4): 897-905.
[15]  Key J,Barry R G.Cloud cover analysis with Arctic AVHRR data: 1. Cloud detection[J]. Journal of Geophysical Research: Atmospheres (1984-2012),1989,94(15): 18521-18535.
[16]  Settle J,Drake N A. Linear mixing and the estimation of ground cover proportions [J]. International Journal of Remote Sensing,1993,14(6): 1159-1177.
[17]  Xu Dong,Su Jie,Liu Zhiqiang,et al.Application of cloud detection algorithm in the Arctic region based on AVHRR satellite data[C]//Proceedings of the International Conference on Remote Sensing Environment and Transportation Engineering.2011(2): 1026-1030.
[18]  Rober D A,Gardner M,Church R,et al.Mapping Chaparral in the South Honica Mountains using multiple endmember spectralmixture models[J].Remote Sens,Environ,1998,65:267-279.
[19]  Perovich D K,Maykut G A,Grenfell T C. Optical properties of ice and snow in the polar oceans. I: Observations[C]// Technical Symposium Southeast International Society for Optics and Photonics,1986: 232-241.
[20]  Cavalieri D J,Markus T,Hall D K,et al. Assessment of EOS Aqua Amsr-E arctic sea ice concentrations using landsat-7 and airborne microwave imagery[J]. Geoscience and Remote Sensing,2006,44(11): 3057-3069.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133