全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

白令海Navarinsky海底峡谷地震剖面解译

DOI: 10.3969/j.issn.0253-4193.2014.10.007, PP. 61-68

Keywords: Navarinsky海底峡谷,地震剖面,沙波

Full-Text   Cite this paper   Add to My Lib

Abstract:

第五次北极科学考察在北极区的白令海首次进行了高分辨率单道地震作业。Navarinsky峡谷头部测线BL11-12剖面中部识别出不对称沙波,陡的一面朝向陆架,波高约为9m、波长约为882m。结合站位U1345的沉积速率及站位U1344表层纵波速率推测沙波沉积可以追溯到中更新世(距今约0.258Ma),同时近陆架的洼地逐渐填平。将地层分为3个沉积层,分析沉积物变化情况,结合0.25Ma以来白令海海平面变化历史,推测最大海退事件对应的界面。结合沙波的地理位置及海平面变化情况,认为内波对沙波的形成起主要作用。

References

[1]  Karl H A, Cacchione D A, Carlson P R. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky canyon head, bering sea[J]. Journal of sedimentary petrology, 1984, 56(5):706-714.
[2]  马德毅.中国第五次北极科学考察报告[M]. 北京:海洋出版社, 2013.
[3]  Takenouti A Y, Ohtani K. Currents and water masses in the Bering Sea: A review of Japanese work[J]. Oceanography of the Bering Sea, 1974(2): 39-57.
[4]  Karl H A, Carlson P R. Surface and near-surface geology, Navarin basin province: Result of the 1980-81 Field Seasons[R]. U S. Geological Survey Open-Field Report 84-89, 1984: 141.
[5]  Carlson P R, Karlt H A, Edwards B D. Puzzling features in the head of Navarinsky Canyon, Bering Sea[J].Seafloor hazards and related surficial geology, Navarin basin province, northern bering sea, 1983:613-624.
[6]  Karl H A, Cacchione D A. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon Head, Bering Sea; discussion and reply[J]. Journal of Sedimentary Research, 1988, 58(4): 769-773.
[7]  Ling H Y. Radiolaria: Leg 19 of the Deep Sea Drilling Project[R]. Init. Repts. DSDP, 19:Washington, DC, 1973:777-797.
[8]  Expedition 323 Scientists. Bering Sea paleoceanography: Pliocene-Pleistocene paleoceanography and climate history of the Bering Sea[R]. IODP Prel Rept, 2010.
[9]  汤毓祥, 矫玉田, 邹娥梅.白令海和楚科奇海水文特征和水团结构的初步分析[J].极地研究, 2001, 13(1):57-68.
[10]  Hopkins D M. Sea Level History in Beringia During the past 250 000 years[J]. Quaternary research, 1973, 3:520-540.
[11]  Broecker W S, van Donk J. Insolation changes, ice volumes and the O18 record in deep sea cores[J]. Reviews of Geophysics and Space Physics, 1970, 8: 169-198
[12]  Stride A H, Tucker M J. Internal waves and waves of sand[J]. Nature, 1960, 188: 933.
[13]  Hand B M. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon head, bering sea-discussion[J]. Jour Sed Petrology, 1988, 58: 769-770.
[14]  刘建勋.提高海上单道反射地震记录信噪比和分辨率的方法技术[J].物化探计算技术, 2007, 29(增刊):116-122.
[15]  Karl H A, Carlson P R. Textural variation of surficial bottom sediment[R]. US geology survey open-file report 84-89, 1984: 17-24.
[16]  Hughes F W, Coachman L K, Aagaard K. Circulation, transport and water exchange in the western Bering Sea[J]. Oceanography of the Bering Sea, 1974 (2): 59-98.
[17]  Kinder T H, Coachman L K, Galt J A.The Bering Slope Current System[J]. Physical oceanography, 1975, 5:231-244.
[18]  Kinder T H, Schumacher J D. Circulation over the continental shelf of the southeastern Bering Sea[J]. The eastern Bering Sea shelf: oceanography and resources, 1981, 1: 53-75.
[19]  Webster B D. Ice Edge Probabilities for the Eastern Bering Sea[M]//US Department of Commerce, National Oceanic and Atmospheric Administration. National Weather Service, Regional Headquarters, 1979.
[20]  Schumacher J D, Aagaard K, Pease C H, et al. Effects of a shelf polynya on flow and water properties in the northern bering sea[J]. Jour Geophys Res, 1983, 88: 2723-2732.
[21]  Karl H A, Cacchione D A. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon Head, Bering Sea; discussion and reply[J]. Journal of Sedimentary Research, 1988, 58(4): 769-773.
[22]  Southard J B, Cacchione D A. Experiments on bottom sediment movement by breaking internal waves[J]. Shelf Sediment Transport: Process and pattern, 1972.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133