Suga T, Hanawa K. The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of subtropical mode water[J]. J Mar Res, 1990, 48(3): 543-566.
[2]
Bingham F M, Suga T. Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and World Ocean Atlas 2001[J]. Ocean Sci, 2006, 2(1): 61-70.
[3]
Munk W H, Forbes A M G. Global ocean warmin: an acoustic measure[J]. J Phys Oceanogr, 1989, 19: 1765-1778.
Oka E, Toyama K, Suga T. Subduction of North Pacific central mode water associated with subsurface mesoscale eddy[J]. Geophys Res Lett, 2009, 36: L08607.
[6]
Hanawa K, Talley L D. Mode waters[M]// Siedler G, Church J, Gould J. Ocean Circulation and Climate. London: Academic Press, 2001: 373-386.
[7]
The Argo Science Team. Report of the Argo Science Team 2nd Meeting (AST-2). 2000:1-18.
[8]
Antonov J I, Seidov D, Boyer T P, et al. World Ocean Atlas 2009 Volume 2: Salinity. NOAA Atlas NESDIS 69, US Government Printing Office, Washington DC, 2010.
[9]
Mackenzie K V. Nine term equation for sound speed in the oceans[J]. J Acoust Soc Am, 1981, 70(3): 807-812.
[10]
Porter M B, Bucher H P. Gaussian beam tracing for computing ocean acoustic fields[J]. J Acoust Soc Am, 1987, 82(4): 1349-1359.
Fitzgerald R M, Guthrie A N, Nutile D A, et al. Influence of the subsurface sound channel on long-range propagation paths and travel times[J]. J Acoust Soc Am, 1974, 55: 47-53.
[13]
Dosso S E, Chapman N R. Acoustic propagation in a shallow sound channel in the Northeast Pacific Ocean[J]. J Acoust Soc Am, 1984, 75: 413-418.
[14]
Ladd C, Thompson L. Formation mechanisms for North Pacific central and eastern subtropical mode waters[J]. J Phys Oceanogr, 2000, 30: 868-887.
[15]
Ohno Y, Iwasaka N, Kobashi F, et al. Mixed layer depth climatology of the North Pacific based on Argo observations[J]. J Oceanogr, 2009, 65(1): 1-16.
Henrick R F, Seigmann W L, Jacobson M J. General analysis of ocean eddy effects for sound transmission applications[J]. J Acoust Soc Am, 1977, 62(4): 860-870.
[19]
Henrick R F, Burkom H S. The effect of range dependence on acoustic propagation in a convergence zone environment[J]. J Acoust Soc Am, 1983, 73(1): 173-182.
Qiu B, Chen S. Decadal variability in the formation of the North Pacific subtropical mode water: oceanic versus atmospheric control[J]. J Phys Oceanogr, 2006, 36(7): 1365-1380.
[27]
Liu Q, Hu H. A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island[J]. Geophys Res Lett, 2007, 34: L12710.
[28]
Oka E, Qiu B. Progress of North Pacific mode water research in the past decade[J]. J Oceanogr, 2012, 68(1): 5-20.
[29]
Operational Oceanography Group: Global Argo Data Repository. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Oceanographic Data Center, Silver Spring, Maryland, 20910. Date of Access, 2007. http://www.nodc.noaa.gov/argo
[30]
Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2009 Volume 1: Temperature. NOAA Atlas NESDIS 68, US Government Printing Office, Washington DC, 2010.
[31]
Bucker H P. A simple 3-D Gaussian beam sound propagation model for shallow water[J]. J Acoust Soc Am, 1994, 95(5): 2437-2440.
[32]
Weinberg H, Keenan R E. Gaussian ray bundles for modeling high-frequency propagation loss under shallow-water conditions[J]. J Acoust Soc Am, 1996, 100(3): 1421-1996.
[33]
Bongiovanni K P, Siegmann W L. Convergence zone feature dependence on ocean temperature structure[J]. J Acoust Soc Am, 1996, 100(5): 3033-3041.
[34]
Qiu B, Huang R X. Ventilation of the North Atlantic and North Pacific: subduction versus obduction[J]. J Phys Oceanogr, 1995, 25(10): 2374-2390.
[35]
Joyce T M. New perspectives on Eighteen Degree Water formation in the North Atlantic[J]. J Oceanogr, 2012, 68(1): 45-52.