全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西南印度洋中脊热液产物稀土元素组成变化及其来源

, PP. 33-41

Keywords: 稀土元素,热液产物,源区,热液流体,西南印度洋中脊

Full-Text   Cite this paper   Add to My Lib

Abstract:

对西南印度洋中脊热液区不同热液产物稀土元素(REE)进行了分析,探讨了热液产物形成过程中稀土元素组成变化及其来源。研究结果表明:不同热液产物稀土元素总量变化范围从3.47°10-7到4.80°10-5,轻重稀土比值(LREE/HREE)从2.06到6.16,表明轻重稀土有较大程度分异,δEu异常(δEu=0.86~3.88)和δCe异常(δCe=0.40~0.86)显示热液产物中REE呈Eu富集和Ce亏损特征。稀土元素球粒陨石标准化模式呈现两种类型:(1)呈轻微富集LREE的平坦模式,∑REE大于2°10-5;(2)呈显著富集LREE和正Eu异常模式,∑REE小于5°10-7。模式1类似于洋壳火山岩REE配分模式,而模式2与西南印度洋中脊黑烟囱REE模式相似,也与典型洋中脊热液喷口流体和硫化物LREE富集和正Eu异常模式类似。热液产物中稀土元素含量变化和模式特征以及Mg与LREE极强正相关关系可能反映了西南印度洋中脊硫化物形成在热液流体与海水混合沉淀的初始阶段,后期经历了广泛的热液流体再循环和海水蚀变过程。

References

[1]  Klinkhammer G P,Elderfield H,Edmond J M,et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta,1994,58: 5105-5113.
[2]  Mitra A,Elderfield H,Greaves M J. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge[J]. Marine Chemistry,1994,47: 217-236.
[3]  James R H,Elderfield H,Palmer M R. The chemistry of hydrothermal fluids from the Broken Spur site,29°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta,1995,59(4): 651-659.
[4]  Tao C,Li H M,Huang W,et al. Mineralogical and geochemical features of sulfide chimney from the 49°39\'E hydrothermal field on the Southwest Indian Ridge and their geological significance[J]. Chinese Science Bulletin,2011,56: 2828-2838.
[5]  Cao Zhimin,Cao Hong,Tao Chunhui,et al. Rare earth element geochemistry of hydrothermal deposits from Southwest Indian Ridge[J]. Acta Oceanologica Sinica,2012,31(2): 62-69.
[6]  Bach W,Roberts S,Vanko D A,et al. Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system,Manus Basin,Papua New Guinea[J]. Mineralium Deposita,2003,38(8): 916-935.
[7]  Yang K,Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system[J].Nature,1996,383: 420-423.
[8]  叶俊,石学法,杨耀民,等.西南印度洋超慢速扩张脊49.6°E 热液区硫化物矿物学特征及其意义[J].矿物学报,2011,31(1): 17-29.
[9]  Marques A F A,Barriga F,Chavagnac V,et al. Mineralogy,geochemistry,and Nd isotope composition of the Rainbow hydrothermal field,Mid-Atlantic Ridge[J]. Mineralium Deposita,2006,41(1): 52-67.
[10]  Mills R A,Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound,26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta,1995,59(17): 3511-3524.
[11]  Paulicka H,Bachb W,Godardc M,et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge,15°20\'N,ODP Leg 209): implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology,2006,234(3/4): 179-210.
[12]  Lesher C M,Gibson H L,Campbell I H. Composition-volume changes during hydrothermal alteration of andesite at Buttercup Hill,Noranda District,Quebec[J]. Geochimica et Cosmochimica Acta,1986,50: 2693-2705.
[13]  Whitford D J,Korsch M J,Porritt P M,et al. Rare-earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River,Tasmania,Australia[J]. Chemical Geology,1988,68: 105-119.
[14]  Graf J L. Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks[J].Economic Geology,1977,72(4): 527-548.
[15]  Bence A E,Taylor B E. Rare earth element systematics of West Shasta metavolcanic rocks:petrogenesis and hydrothermal alteration[J]. Economic Geology,1985,80: 2164-2176.
[16]  Michard A.Rare earth element systematics in hydrothermal fluids[J].Geochimica et Cosmochimica Acta,1989,53: 745-750.
[17]  Tiezzi L J,Scott R B.Crystal fractionation in a cumulate gabbro,Mid-Atlantic Ridge,26°N[J].Journal of Geophysical Research,1980,85: 5438-5454.
[18]  Zeng Zhigang,Wang Qiaoyun,Wang Xiaomei,et al. Geochemistry of abyssal peridotites from the super slow-spreading Southwest Indian Ridge near 65°E:implications for magma source and seawater alteration[J].Journal of Earth System Science,2012,121(5): 1317-1336.
[19]  Niu Y. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting,melt extraction and post-melting processes beneath mid-ocean ridges[J]. Journal of Petrology,2004,45(12): 2423-2458.
[20]  Campbell I H,Lesher C M,Coad P,et al. Rare-earth element mobility in alteration pipes below massive Cu-Zn sulfide deposits[J].Chemical Geology,1984,45: 181-202.
[21]  Barrett T J,Jarvis I,Jarvis K E. Rare-earth element geochemistry of massive sulfides-sulfates and gossans on the southern explorer ridge[J].Geology,1990,18(7): 583-586.
[22]  Gammons C H,Wood S A,Williams-Jones A E. The aqueous geochemistry of the rare earth elements and Y: VI.Stability of neodynium chloride complexes from 25 to 300℃[J]. Geochimica et Cosmochimica Acta,1996,60(23): 4615-4630.
[23]  Shmulovich K,Heinrich W,Moller P,et al. Experimental determination of REE fractionation between liquid and vapour in the systems NaCl-H2O and CaCl2-H2O up to 450℃[J]. Contributions to Mineralogy and Petrology,2002,144(3): 257-273.
[24]  Michard A,Albaréde F,Michard G,et al. Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N)[J]. Nature,1983,303: 795-797.
[25]  Michard A,Albaréde F. The REE content of some hydrothermal fluids[J]. Chemical Geology,1986,55: 51-60.
[26]  Tao C,Wu G,Ni J,et al. New hydrothermal fields found along the Southwest Indian Ridge during the Legs 5-7 of the Chinese DY115-20 expedition. Eos (Transactions,American Geophysical Union),Fall Meeting supplement,2009,OS21A-1150.
[27]  Tao Chunhui,Jian Lin,Shiqin Guo,et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology,2012,40(1): 47-50.
[28]  Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology,1991,93: 219-230.
[29]  Wood S A, Williams-Jones A E. The aqueous geochemistry of the rare-earth elements and yttrium 4.Monacite solubility and REE mobility in exhalative massive sulfide-depositing environments[J]. Chemical Geology,1994,115: 47-60.
[30]  Haas J R,Shock E L,Sassini D C. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta,1995,59(21): 4329-4350.
[31]  Coppin F,Berger G,Bauer A,et al. Sorption of lanthanides on smectite and kaolinite[J]. Chemical Geology,2002,182: 57-68.
[32]  Douville E,Bienvenu P,Charlou J L,et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J].Geochimica et Cosmochimica Acta,1999,63: 627-643.
[33]  Sun S S,McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London,1989,42: 313-345.
[34]  Campbell A C,Palmer M R,Klinkhammer G P,et al. Chemistry of hot springs on the Mid-Atlantic Ridge[J]. Nature,1988,335: 514-519.
[35]  Barrat J A,Boulegue J,Tiercelinet J J,et al. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika,East Africa[J]. Geochimica et Cosmochimica Acta,2000,64(2): 287-298.
[36]  Puchelt H,Emmermann R. REE characteristics of ocean floor basalts from the MAR 37°N (Leg 37 DSDP)[J]. Contributions Mineralogy Petrology,1977,62: 43-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133