全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于特征选取及广义傅立叶分形的SAR图像海洋溢油检测算法

DOI: 10.3969/j.issn.0253-4193.2014.05.007, PP. 61-67

Keywords: SAR,油膜,类油膜,傅立叶分形,特征选取

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对海上溢油SAR图像中油膜与类油膜的识别问题,提出了一种结合傅立叶分形与特征提取的检测算法。由于分形特征可以具有无穷多的细节,并在不同的研究尺度存在自仿射特性。这与油膜及类油膜表面的几何形貌特征非常吻合。该算法通过计算样本的傅立叶分形特征,组成油膜与类油膜的特征空间。然后,应用基于差分进化的特征选取方法将利于分类的重要特征值筛选出来。再利用重要特征值对原有样本进行分类。实验表明,经特征选取的分形特征向量能够以100%的准确率将两类样本区分开。该算法在选取重要特征的同时实现了对高维特征空间降维的目的,该思想可以应用于其他的基于高维特征的识别系统中,具有普遍的适用性。

References

[1]  Adel Al-J, Ahmed Al-A, Rami K, et al. Differential Evolution based Feature Subset Selection[C]//Proceedings of the 19th International Conference on Pattern Recognition(ICPR-2008). Sydney:University of Technology, 2007.
[2]  Konstantinos T, Apostolos P. Oil spill feature selection and classification using decision tree forest on SARimage data[J]. Journal of Photogrammetry and Remote Sensing, 2012, 68:135—143.
[3]  Stathakis D, Topouzelis K, Karathanassi V. Large-scale feature selection using evolved neural networks[C]//Image and Sigmal Processing for Remote Sensing XII. Stockholm, 2006.
[4]  Topouzelis K, Stathakis D, Karathanassi V. Investigation of genetic algorithms contribution to feature selection for oil spill detection[J]. International Journal of Remote Sensing, 2009, 30(3):611—625.
[5]  Pudil P, Novovicova J, Kittler J. Floating search methods in features election[J]. Pattern Recognition Letters, 1994, 15(11):1119—1125.
[6]  Mandelbrot B B. Fractals: Form, Chance, and Dimension[M]. San Francisco:Freeman, 1977.
[7]  Mandelbrot B B.The Fractal Geometry of Nature[M]. San Francisco:Freeman, 1983.
[8]  Berizzi F, Bertini G, Martoreua M, et al.Two-dimensional variation algorithm for fractal analysis of sea SAR images[J].IEEE Trans on Geoscience and Remote Sensing, 2006, 44(9):2361—2373.
[9]  Martino G D, Lodice A, Riccio D, et al.A navel approach for disaster monitoring:fractal models and tools[J]. IEEE Trans On Geoscience and Remote Sensing, 2007, 45(6):1559—1570.
[10]  Charalampidi D, Stein G W. Target detection based on multiresolution fractal analysis[C]//Defense and Seourity Symposiom.International Society for Optics and Photonics, 2007:65671B-6567TB-8.
[11]  Guo Yue, Wang Xiaofeng. Oil Spill Detection by SAR Images Based on Shape Feature Space[J].International Proceedings of Computer Science and Information Technology, 2011, 17:187—194.
[12]  Russ J C. Fractal Surfaces[M]. New York:Plenum Press, 1994.
[13]  Chan K. Quantitative characterization of electron micrograph imageusing fractal feature[J].IEEE Transactions on Biomedical Engineering, 1995, 42(10):1033—1037.
[14]  Quevedo R, Mendoza F, Aguilera J M, et al. Determination of senescent spotting in banana(Musa cavendish)using fractal texture Fourier image[J]. Journal of Food Engineering, 2008, 84(4): 509—515.
[15]  Turner M J, Blackledge J M, Andrews P R. Fractal Geometry in Digital Imaging[M]. London: Academic Press, 1998.
[16]  Rawers J, Tylczak J. Fractal characterization of wear-erosion surfaces[J].Journal of Materials Engineering and Performance, 1999, 8(6):669—676.
[17]  Price K, Storn R M, Lampinen J A. Differential evolution: A practicalapproach to global optimization[M]. Washington: U.S. Government Printing Office, 2005.
[18]  Chang L, Tang Z S, Chang S H, et al. A region-based GLRT detection of oil spills in SAR images[J].Pattern Recognition Letters, 2008, 29:1915—1923.
[19]  Suman S, Michele V, Olaf T. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark[J].Marine Pollution Bulletin, 2013, 73(1):199—209.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133