Wilson J T. A possible origin of the Hawaiian Islands[J]. Canadian Journal of Physics, 1963, 41:863-870.
[2]
Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288):42-43.
[3]
Sleep N H. Mantle plumes from top to bottom[J]. Earth-Science Reviews, 2006, 77: 231-271.
[4]
Sleep N H. Hotspot volcanism and mantle plumes[J]. Annual Review of Earth and Planetary Sciences, 1992, 20: 19-43.
[5]
Montelli R, Nolet G, Dahlen F A, et al. A catalogue of deep mantle plumes: New results from finite frequency tomography[J]. Geochemistry, Geophysics, Geosystems, 2006, 7, Q11007.
[6]
Davies J H, Bunge H P. Are splash plumes the origin of minor hotspots[J]. Geology, 2006, 34: 349-352.
[7]
Coffin M F, Gahagan L M. Ontong Java and Kerguelen Plateaux: Cretaceous Icelands[J].Journal of Geological Society, 1995, 152: 1047-1052.
[8]
Yan Q, Shi X. Geological comparative studies of Japan Arc System and Kyushu-Palau Arc[J]. Acta Oceanologica Sinica, 2011, 30(4): 107-121.
[9]
Vogt P R. Subduction and aseismic ridges[J]. Nature, 1973, 241: 189-191.
[10]
Wolfe C J, Solomon S C, Laske G, et al. Mantle shear-wave velocity structure beneath the Hawaiian hotspot[J]. Science, 2009, 326: 1388-1391.
[11]
Keller R A, Duncan R A, Fisk M R. Geochemistry and40Ar/39Ar geochronology of basalts from ODP Leg 145-North Pacific Transect[J]. ODP Scientific Results, 1995, 145: 333-344.
[12]
Cheng Q, Park K H, MacDougall J D, et al. Isotopic evidence for a hotspot origin of the Louisville Seamount Chain, in Seamounts, Islands, and Atolls[M]. Geophys Monogr Ser, 1987, 43, 283-296.
[13]
Koppers A A, Yamazaki T, Geldmacher J, et al. Louisville Seamount Trail: Implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots[C]. Integr Ocean Drill Program Prelim Rep, 2011, 30.
[14]
Expedition 344 Scientists. Costa Rica Seismogenesis Project(CRISP-A2): sampling and quantifying lithologic inputs and fluid inputs and outputs of the seismogenic zone[C]. IODP Prel Rept, 2013:344.
[15]
Lonsdale P, Fornari D. Submarine geology of Malpelo Ridge, Panama basin[J]. Marine Geology, 1980, 36: 65-83.
[16]
Marcaillou B, Charvis P, Collot J. Structure of the Malpelo Ridge(Colombia) from seismic and gravity modeling[J]. Marine Geophysical Researches, 2006, 27: 289-300.
[17]
Hagen R A, Moberly R. Tectonic effects of a subducting aseismic ridge: the subduction of the Nazca ridge at the Peru trench[J]. Marine Geophysical Researches, 1994, 16: 145-161.
[18]
Pilger R H, Handschumacher D W. The fixed-hotspot hypothesis and origin of the Easter-Salay Gomez-Nazca trace[J]. Geological Society of America Bulletin, 1981, 92: 437-446.
[19]
Perez-Gussinye M, Lowry A R, Morgan J P, et al. Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry[J]. Geochemistry, Geophysics, Geosystems, 2007, 9, Q02003.
[20]
von Huene R, Corvalan J, Fluch E R, et al. Tectonic control of the subducting Juan Fernandez Ridge on the Andean margin near Valparaiso, Chile[J]. Tectonics, 1997, 16(3): 474-488.
[21]
Bouysee P, Westercamp D. Subduction of Atlantic aseismic ridges and Late Cenozoic evolution of the Lesser Antilles island arc[J]. Tectonophysics, 1990, 175: 349-380.
[22]
Peter G. Tectonic evolution of the eastern margin of the Caribbean region(Abstract)[J]. Geological Society of America Bulletin Abstract Programs, 1974, 6: 910.
[23]
McCann W R, Sykes L R. Subduction of aseismic ridges beneath the Caribbean plate: implications for the tectonics and seismic potential of the northeastern Caribbean[J]. Journal of Geophysical Research, 1984, 89(B6): 4493-4519.
[24]
Curray J R, Munasinghe T. Origin of the Rajmahal Traps and the 85°E Ridge preliminary reconstructions of the trace of the Crozet hotspot[J]. Geology, 1991, 19: 1237-1240.
[25]
Kent W, Saunders A D, Kempton P D, et al. Rajmahal basalts, eastern India: Mantle sources and melt distribution at a volcanic rifted margin[C]. Geophysical Monograph, 1997, 100: 145-182.
[26]
Geist E L, Fisher M A, Scholl D W. Large-scale deformation associated with ridge subduction[J]. Geophysical Journal International, 1993, 115: 344-366.
[27]
von Huene R. When seamounts subduct[J]. Science, 2008, 321: 1165-1166.
[28]
Martinod J, Funiciello F, Faccenna C, et al. Dynamic effects of subducting ridges: insights from 3-D laboratory models[J]. Geophysical Journal International, 2005, 163: 1137-1150.
[29]
Kelleher J, McCann W. Buoyant zones, great earthquakes, and some predictions[J]. Journal of Geophysical Research, 1976, 81: 4885-4896.
[30]
Gutscher M A, Spakman W, Bijwaard H, et al. Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin[J]. Tectonics, 2000, 19: 814-833.
[31]
Cloos M. Lithospheric Buoyancy and Collisional Orogenesis-Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges, and Seamounts[J]. Geological Society of America Bulletin, 1993, 105: 715-737.
[32]
Gorczyk W, Willner A P, Gerya T V, et al. Physical controls of magmatic productivity at Pacific-type convergent margins: new insights from numerical modeling[J]. Physics of the Earth and Planetary Interiors, 2007, 163: 209-232.
[33]
Wessel P, Sandwell D T, Kim S S. The global seamount census[J]. Oceanography, 2010, 23(1):24-33.
[34]
Staudigel H, Clague D A. The geological history of deep-sea volcanoes: Biosphere, hydrosphere, and lithosphere interactions[J]. Oceanography, 2010, 23(1): 58-71.
[35]
Laursen J, Scholl D W, von Huene R. Neotectonic deformation of the central Chile margin: Deepwater forearc basin formation in response to hot spot ridge and seamount subduction[J]. Tectonics, 2002, 21(5):2-1-2-27.
[36]
Ulrich M, Hémond C, Nonnotte P, et al. OIB/seamount recycling as a possible process for E-MORB genesis[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(6), Q0AC19.
[37]
Avdeiko G P. On possible continuation of the Hawaiian-Emperor chain in Kamchatka[C]. Initial reports of the Deep Sea Drilling Project, 1980, 55: 851-854.
[38]
Steinberger B, Gaina C. Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea[J]. Geology, 2007, 35: 407-410.
[39]
Lagoe M B, Harun N T, Mann P. Effects of subduction of the Hawaiian-Emperor Seamount chain on the Kamchatka convergent margin: 2. Structural and stratigraphic effects on the forearc basin[C]. EOS Transactions, American Geophysical Union, Fall Meetng, 1995, F538.
[40]
Kepezhinskas P, Defant M J, Mann P. Effects of subduction of the Hawaiian-Emperor Seamount chain on the Kamchatka convergent margin: 1. Geochemical effects on the volcanic arc[C]. Transactions, American Geophysical Union, Fall Meetng, 1995, F538.
[41]
Bianco T A, Ito G, van Hunen J, et al. Geochemical variation at the Hawaiian hot spot caused by upper mantle dynamics and melting of a heterogeneous plume[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(11), Q11003.
[42]
Hofmann A W. Mantle geochemistry: the massage from oceanic volcanism[J]. Nature, 1997, 385: 219-229.
[43]
Yan Quanshu, Castillo P, Shi Xuefa. Geochemistry of basaltic lavas from the southern Lau Basin: input of compositionally variable subduction components[J]. International Geology Review, 2012, 54(12): 1456-1474.
[44]
Hergt J M, Woodhead J D. A critical evaluation of models for Lau-Tonga arc-backarc basin magmatic evolution[J]. Chemical Geology, 2007, 245: 9-44.
[45]
Regelous M, Gamble J A, Turner S P. Mechanism and timing of Pb transport from subducted oceanic crust and sediment to the mantle source of arc lavas[J]. Chemical Geology, 2010, 273: 46-54.
[46]
Tian L, Castillo P R, Hilton D R, et al. Major and trace element and Sr-Nd isotope signatures of the northern Lau Basin lavas: Implications for the composition and dynamics of the back-arc basin mantle[J]. Journal of Geophysical Research, 2011.
[47]
Hoernle K, Abt D L, Fischer K M, et al. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua[J]. Nature, 2008, 451: 1094-1098.
[48]
Hoernle K, Hauff F, van den Bogaard P. 70 my history(139-69 Ma) for the Caribbean large igneous province[J]. Geology, 2004, 32: 697-700.
[49]
Bourdon E, Eissen J P, Gutscher M A, et al. Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case(South America) [J]. Earth and Planetary Science Letters, 2003, 205: 123-138.
[50]
Ya?ez G A, Ranero C R, von Huene R. et al. Magnetic anomaly interpretation across the southern central Andes(32°-34°S): the role of the Juan Fernandez Ridge in the late Tertiary evolution of the margin[J]. Journal of Geophysical Research, 2001, 106: 6325-6345.
[51]
Mahoney J J, Duncan R A, McCormick G R, et al. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: Implications for the Reunion Hotspot and Deccan Traps[J]. Earth and Planetary Science Letters, 2002, 203: 295-310.
[52]
Duncan R A. The volcanic record of the Reunion hotspot[C]//Proc. ODP Sci. Results. 1990, 115: 3-10.
Castillo P R. Origin and geodynamic implication of the Dupal isotopic anomaly in volcanic rocks from the Philippine island arcs[J]. Geology, 1996, 24: 271-274.
Li Zhengxiang, Li Xianhua. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.
[59]
White W M. Oceanic island basalts and mantle plumes: the geochemical perspective[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 133-160.
[60]
Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the Earth mantle[J]. Earth and Planetary Science Letters, 2003, 205: 295-308.
[61]
Campbell I H. Testing the plume theory[J]. Chemical Geology, 2007, 241: 153-176.
[62]
O\'Neill C, Muller D, Steinberger B. Geodynamic implications of moving Indian Ocean hotspots[J]. Earth and Planetary Science Letters, 2003, 215: 151-168.
[63]
Koppers A A P, Gowen M D, Colwell L E, et al. New40Ar/39Ar age progression for the Louisville hot spot trail and implications for inter-hot spot motion[J]. Geochemistry, Geophysics, Geosystems, 2011, 12, Q0AM02.
[64]
Marsaglia K, Mann P, Hyatt R J, et al. Evaluating the influence of aseismic ridge subduction and accretion on detrital modes of forearc sandstone: an example from the Kronotsky Peninsula in the Kamchatka Forearc[J]. Lithos, 1999, 46: 17-42.
[65]
Ito G, Lin J, Gable C W. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galapagos pume-ridge system[J]. Journal of Geophysical Research, 1997, 102(B7): 15403-15417.
[66]
Mahoney J J, Storey M, Duncan R A, et al. Geochemistry and geochronology of Leg 130 basement lavas: Nature and origin of the Ontong Java Plateau, in Proceedings of the Ocean Drilling Program, Scientific Results[C]//Proceedings of the Ocean Driding Program, Scientific Result.College Station, 1993, 130:3-22.
[67]
Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones[J]. Journal of Geophysical Research, 2012, 117, B08403.
[68]
van Hunen J, van den Berg A P, Vlaar N J. On the role of subducting oceanic plateaus in the development of shallow flat subduction[J]. Tectonophysics, 2002, 352: 317-333.
[69]
Portnyagin M, Savelyev D, Hoernle K, et al. Mid-Cretaceous Hawaiian tholeiites preserved in Kamchatka[J]. Geology, 2008, 36: 903-906.
[70]
Sharp W D, Clague D A. 50-Ma Initiation of Hawaiian-Emperor bend records major change in Pacific plate motion[J]. Science, 2006, 313: 1281-1284.
[71]
Tarduno J A. On the motion of Hawaii and other mantle plumes[J]. Chemical Geology, 2007, 241: 234-247.
[72]
Tarduno J, Bunge H P, Sleep N, et al. The bent Hawaiian-Emperor hotspot track: inheriting the mantle wind[J]. Science, 2009, 324: 50-53.
[73]
Hawkins J W, Lonsdale P F, Batiza R. Petrologic evolution of the Louisville seamount chain, in Seamounts, Islands, and Atolls[M]. Geophys Monogr Ser, 1987, 43: 235-254.
[74]
Geli L, Aslanian D, Olivet J L, et al. Location of Louisville hotspot and origin of Hollister Ridge: geophysical constraints[J]. Earth and Planetary Science Letters, 1998, 164: 31-40.
[75]
Vlastelic I, Dosso L, Guillou H, et al. Geochemistry of the Hollister Ridge: relation with the Louisville hotspot and the Pacific-Antarctic Ridge[J]. Earth and Planetary Science Letters, 1998, 160: 777-793.
[76]
Contreras-Reyes E, Grevemeyer I, Watts A B, et al. Crustal intrusion beneath the Louisville hotspot track[J]. Earth and Planetary Science Letters, 2010, 289: 323-333.
von Huene R, Ranero C R, Weinrebe W, et al. Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos plate, and Central American volcanism[J]. Tectonics, 2000, 19(2):314-334.
[79]
Werner R, Hoernle K, Barkckhausen U, et al. Geodynamic evolution of the Galapagos hot spot system(Central East Pacific) over the past 20 my: Constraints from morphology, geochemistry, and magnetic anomalies[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(12), 1108.
[80]
Walther C H E. The crustal structure of the Cocos Ridge off Costa Rica[J]. Journal of Geophysical Research, 2003, 108(B3):2136.
[81]
Harpp K S, Wanless V D, Otto R H, et al. The Cocos and Carnegie Aseismic Ridges: a trace element record of long-term plume-spreading center interaction[J]. Journal of Petrology, 2005, 46: 109-133.
[82]
Hoernle K, van den Bogaard P, Werner R, et al. Missing history(16~71 Ma) of the Galapagos hotspot: Implications for the tectonic and biological evolution of the Americas[J]. Geology, 2002, 30: 795-798.
[83]
Sallares V, Charvis P. Crustal thickness constraints on the geodynamic evolution of the Galapagos volcanic province[J]. Earth and Planetary Science Letters, 2003, 214: 545-559.
[84]
Hampel A, Kukowski N, Bialas J, et al. Ridge subduction at an erosive margin: The collision zone of the Nazca Ridge in southern Peru[J]. Journal of Geophysical Research, 2004, 109, B02101.
[85]
Sandwell D, Smith W H F. Gravity anomaly from Geosat and ERS-I altimetry, version 6.0[C]. Geological Data Center, Scripps Institution of Oceanography, La Jolla, California, 1995.
[86]
Stein S, Engeln J, Wiens D, et al. Subduction seismicity and tectonics in the Lesser Antilles[J]. Journal of Geophysical Research, 1982, 87: 8642-8664.
[87]
Courtillot V E, Besse J, Vandamme D, et al. Deccan flood basalts at the Cretaceous/Tertiary boundary[J]. Earth and Planetary Science Letters, 1986, 80: 361-374.
[88]
Saunders A D, Storey M, Gibson I L, et al. Chemical and isotopic constraints on the origin of basalt from Ninetyeast Ridge: results from DSDP Legs 22 and 26 and ODP Leg 121[C]. Proceedings of the Ocean Drilling Program, Sci Results, 1991, 121: 559-590.
[89]
Frey F A, Pringle M, Meleney P, et al. Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses[J]. Earth and Planetary Science Letters, 2011, 303: 215-224.
[90]
Chung W Y, Kanamori H. A mechanical model for plate deformation associated with aseismic ridge subduction in the New Hebrides arc[J]. Tectonophysics, 1978, 50: 29-40.
[91]
Gerya T V, Fossati D, Canetini C, et al. Dynamic effects of aseismic ridge subduction: numerical modeling[J]. European Journal of Mineralog, 2009, 21: 649-661.
[92]
Rosenbaum G, Mo W. Tectonic and magmatic responses to the subduction of high bathymetric relief[J]. Gondwana Research, 2011, 19: 571-582.
[93]
Nur A, Ben-Avraham Z B. Volcanic gaps due to oblique consumption of aseismic ridges[J]. Tectonophysics, 1983, 99: 355-362.
[94]
Gutscher M A, Malavieille J, Lallemand S, et al. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision[J].Earth and Planetary Science Letters, 1999, 168: 255-270.
[95]
Watts A, Koppers A A P, Robinson D P. Seamount subduction and earthquakes[J]. Oceanography, 2010, 23: 106-113.
[96]
Nishizawa A, Kaneda K, Watanabe N, et al. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan trench[J]. Earth Planets Space, 2009, 61: e5-e8.
[97]
Staudigel H, Koopers A P, Plank T A, et al. Seamounts in the subduction factory[J]. Oceanography, 2010, 23(1): 176-181.
[98]
Koppers A A P, Watts A B. Intraplate seamounts as a window into deep Earth processes[J]. Oceanography, 2010, 23: 42-57.
[99]
Hanyu T, Tatsumi Y, Senda R, et al. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(2), Q0AC09.
[100]
Hauri E H. Major-element variability in the Hawaiian mantle plume[J]. Nature, 1996, 382: 415-419.
[101]
Huang S, Frey F A. Recycled oceanic crust in the Hawaiian plume: evidence from temporal geochemical variations within the Koolau Shield[J]. Contributions to Mineralogy and Petrology, 2005, 149: 556-575.
[102]
Yang H J, Frey F A, Clague D A. Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu volcanics[J]. Journal of Petrology, 2003, 44: 603-627.
[103]
Turner S P, Hawkesworth C J, Rogers N, et al.238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc[J]. Geochimica et Cosmochimica Acta, 1997, 61: 4855-4884.
[104]
Regelous M, Turner S, Falloon T J, et al. Mantle dynamics and mantle melting beneath Niuafo\'ou Island and the northern Lau back-arc basin[J]. Contributions to Mineralogy and Petrology, 2008, 156: 103-118.
[105]
Lupton J E, Arculus R J, Evans L J, et al. Mantle hotspot neon in basalts from the Northwest Lau Back-arc Basin[J]. Geophysical Research Letters, 2012, 39, L08308.
[106]
Ranero C R, von Huene R. Subduction erosion along the Middle America convergent margin[J]. Nature, 2000, 404: 748-752.
[107]
Gans P B, Macmillan I, Alvarado-Inundi G, et al. Neogene evolution of the Costa Rican arc[J]. Geological Society of America Bulletin Abstract Programs, 2002. 114: 224-12.
[108]
Abratis M, W?rner G. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm[J]. Geology, 2001, 29(2): 127-130.
[109]
Spence W, Mendoza C, Engdahl E R, et al. Seismic subduction of the Nazca Ridge as shown by the 1996-97 Peru earthquakes[J]. Pure and Applied Geophysics 1999, 154: 753-776.
[110]
Swenson J, Beck S. Source characteristics of the 12 November 1996 Mw 7. 7 Peru subduction zone earthquake[J]. Pure and Applied Geophysics, 1999, 154: 731-751.
[111]
Gahalaut V K, Kundu B. Possible influence of subducting ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes[J]. Gondwana Research, 2012, 21: 1080-1088.
[112]
Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin[J]. Journal of Geophysical Research, 2006, 111(B02401).
[113]
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications of mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[114]
Niu Y, O\'Hara M. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research, 2003, 108(B4): 2209.
[115]
Rosenbaum G, Giles D, Betts P, et al. Formation of Ore Deposits Triggered by Aseismic Ridge Subduction[C]. American Geophysical Union, 2005.
[116]
Rosenbaum G, Giles D, Saxon M, et al. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru[J]. Earth and Planetary Science Letters, 2005, 239: 18-32.
[117]
Yan Quanshu, Shi Xuefa, Wang Kunshan, et al. Major element, trace element, and Sr-Nd-Pb isotope studies of Cenozoic basalts from the South China Sea[J]. Science in China(Series D), 2008, 51(4): 550-566.
Defant M J, Jacques D, Maury R C, et al. Geochemistry and tectonic setting of the Luzon arc, Philippines[J]. Geological Society of America Bulletin, 1989, 101: 663-672.