Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155-1158.
[2]
Tivey M A, Schouten H, Kleinrock M C. A near-bottom magnetic survey of the mid-Atlantic Ridge axis at 26°N: Implications for the tectonic evolution of the TAG segment[J]. Journal of Geophysical Research, 2003, 108(B5): 1-13.
[3]
Mccaig A M, Cliff R A, Escartin J, et al. Oceanic detachment faults focus very large volumes of black smoker fluids[J]. Geology, 2007, 35(10): 935-938.
[4]
Fouquet Y, Cherkashov G, Charlou J L, et al. Serpentine cruise-ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields[J]. InterRidge News, 2008, 17: 16-21.
[5]
Marques A F A, Barriga F J A S, Scott S D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides[J]. Marine Geology, 2007, 245: 20-39.
[6]
Lein A Y, Ulyanova N V, Ulyanov A, et al. Mineralogy and geochemistry of sulfide ores in oceanfloor hydrothermal fields associated with serpentine protrusions[J]. Russian Journal of Earth Sciences, 2001, 3(5):.
[7]
Rouxel O, Fouquet Y, Ludden J. Copper isotope systematics of the Lucky Strike, Rainbow and Logatchev seafloor hydrothermal fields in the Mid-Atlantic Ridge[J]. Economic Geology, 2004, 99: 585-600.
[8]
Marques A F A, Barriga F J A S, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge[J]. Mineralium Deposita, 2006, 41: 52-67.
[9]
Escartin J, Canales J P. Detachments in oceanic lithosphere: Deformation, magmatism, fluid flow and ecosystems . Eos, Transactions, American Geophysical Union, 2011, 92(4): 31.
[10]
Allen D E, Seyfried W E. Serpentinization and heat generation: Constraints from Lost City and Rainbow hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1347-1354.
[11]
Kelley D S, Karson J A, Fruh-green G L, et al. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field[J]. Science, 2005, 307: 1428-1434.
Candela P A, Wylie A G, Burke T M. Genesis of the ultramafic rock-associated Fe-Cu-Co-Zn-Ni deposits of the Sykesville district, Maryland Piedmont[J]. Economic Geology, 1989, 84: 663-675.
[14]
Leblanc M, Billaud P. Cobalt arsenide orebodies related to an upper Proterozoic ophiolite: Bou Azzer (Morocco)[J]. Economic Geology, 1982, 77: 162-175.
[15]
Buck W R, Lavier L L, Poliakov A N B. Modes of faulting at mid-ocean ridges[J]. Nature, 2005, 434: 719-723.
[16]
Smith D K, Cann J R, Escartin J, et al. Widespread active detachment faulting and core complex formation near 138°N on the Mid-Atlantic Ridge [J]. Nature, 2006, 442: 440-443.ona P A, Hannington M D, Raman C V, et al. Active and relic seafloor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Economic Geology, 1993, 88: 1989-2017.
[17]
Tesalina S G, Nimis P, Auge T. Origin of chromite in mafic-ultramafic-hosted hydrothermal massive sulfides from the Main Uralian Fault, South Urals, Russia[J]. Lithos, 2003, 70(1/2): 39-59.
[18]
Nimis P, Zaykov V V, Omenetto P, et al. Peculiarities of some mafic-ultramafic-and ultramafic-hosted massive sulfide deposits from the Main Uralian Fault Zone, southern Urals[J]. Ore Geology Reviews, 2008, 33: 49-69.
[19]
Constantinou G, Govett G J S. Geology, geochemistry, and genesis of Cyprus sulfide deposits[J]. Economic Geology, 1973, 68(6): 843-858.
Nisbet E, Pearce J A. TiO2 and a possible guide to past oceanic spreading rates[J]. Nature, 1973, 246: 468-470.
[23]
Yang J S, Shi R D, Wu C L, et al. Dur\'ngoi Ophiolite in East Kunlun, NortheastTibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China[J]. Journal of Earth Science, 2009, 20(2): 303-331.
[24]
Yang J S, Hall J M. An intermediate-fast spreading rate of the Troodos type oceanic crust: a comparison to modern oceanic crusts[J]. Con
[25]
Seyfried W E, Pester N J, Ding K, et al. Vent fluid chemistry of the Rainbow hydrothermal system (36°N, MAR): phase equilibria and in situ pH controls on subseafloor alteration processes[J]. Geochimica et Cosmochimica Acta, 2011, 75: 1574-1593.
[26]
Beltenev V, Nescheretov A, Shilov V, et al. New discoveries at 12°58\'N, 44°52\'W, MAR: Professor Logatchev-22 cruise, initial results[J]. InterRidge News, 2003, 12: 13-14.
[27]
Bach W, Fruh-green G L. Alteration of the Oceanic Lithosphere and Implications for Seafloor Processes[J]. Elements, 2010, 6: 173-178.
Ridler R H. Analysis of Archean volcanic basins in the Canadian Shield using the exhalite concept[J]. Bulletin of the Canadian Institute of Mining and Metallurgy, 1971, 64(714): 20.
[36]
Shanks W C PAT III, Thurston R. Volcanogenic massive sulfide occurrence model[M]. U.S. Geological Survey Scientific Investigations Report, 2012, 2010-5070-C:1-345.
[37]
[tine孮彴孡l 桄乹艮am险呣陳, 笱99丶昬丠弱尺尠鐷眰唭洸尰??鑢硲贾屛瘵匶獝匠克扯睮慳乴antin坯赶遳扫aia E A, Maurice B, Malavieille J. Discovery of the Paleo-Tethys residual peridotites along the Anyemaqen-KunLun suture zone (North Tibet)[J]. C R Geoscience, 2003, 335: 709-719.
[38]
Peltonen P, Kontinen A, Huhma H, et al. Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu-Co-Zn-Ni-Ag-Au sulphide deposits[J剝儮匠Or陥丠葇eo奬襯浧乹脠聒牥鹶鑩睥癷牳弬匠儲戰嘰8, 33洺洠丵渵氹-617.
[39]
Auclair M, Gauthier M, Trottier J, et al. Mineralogy, geochemistry, and paragenesis of the Eastern Metal serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians[J]. Economic Geology, 1993, 88: 123-138.
[40]
Herzig P M, Hannington M D. Polymetallic massive sulfides at the modern seafloor: A review[J]. Ore Geology Review, 1995, 10: 95-115.
[41]
Tivey M K. The formation of mineral deposits at mid-ocean ridges[J]. Oceanus, 1998, 41(2): 22-26.
[42]
Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1): 50-65.
[43]
Large R. Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models[J]. Economic Geology, 1992, 87: 471-510.
[44]
Barrie C T, Hannington M D. Introduction: classification of VMS deposits based on host rock composition[C]// Barrie C T, Hannington M D. Volcanic-associated massive sulfide deposits: processes and examples in modern and ancient settings. SEG, 1997, 8: 1-12 (Ottawa).
[45]
Alt J. Subseafloor processes in mid-ocean ridge hydrothermal systems[C]// Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Humphris S E, Zierenberg R A, Mullineaux L S, Thomson R E, AGU Monograph Series, No. 91, American Geophysical Union, Washington DC,1995: 85-114.
[46]
Tao C H, Li H M, Huang W, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39\'E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56: 2828-2838.
Yang J S, Zheng X H, Bai W J, et al. A Preliminary Study on Genesis of the Dur\'ngoi Massive Cu-Co-Zn Sulfide Deposit Hosted by the Peridotite of A\'nyemaqen Ophiolite, Kunlun Mt., China . Proc. 30th IGC. 1997, 9: 382-391.
[53]
Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14\'N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J]. Chemical Geology, 2002, 184: 37-48.
[54]
Augustin N. The Logatchev Hydrothermal Field (MAR, 15°N): High-and Low-Temperature Alteration of Ultramafic Oceanic Crust-Geology, Geochemistry, Mineralogy . Kiel: University of Kiel, 2007.