OALib Journal期刊
ISSN: 2333-9721
费用:99美元
海底双相随机介质声反射的SVM神经网络分类识别研究
DOI: 10.3969/J.ISSN.0253-4193.2014.03.015 , PP. 134-142
Keywords: 双相随机介质 ,等效介质理论 ,支持向量机 ,粒子群算法
Abstract:
考虑海底沉积介质为双相介质,为了更好地模拟实际海底底质的不均匀性,将随机介质理论引入双相介质理论。首先,通过基于随机-双相介质理论的高阶有限差分数值技术模拟计算海底底质分别为泥质砂、泥、泥质砾时的地震反射波信号。然后利用小波变换分别求取不同底质的一次反射波的包络作为其特征向量,最后利用基于粒子群智能算法优化的支持向量机神经网络对这些反射波信号进行分类识别。为了进一步考察所用方法的抗噪能力,对正演得到的海底底质反射波信号分别加入10%、30%、50%的高斯白噪音之后再进行分类,支持向量机仍然取得了较好的分类预测效果。基于上述正演模拟及分类识别方法的论证,提出了一套行之有效的微机软件模拟海底沉积物分类识别的一般化流程,这将有利于开展海底沉积物反射特征的进一步研究。
References
[1] 刘胜旋, 关永贤.介绍几种典型的海底底质分类技术[J].海洋地质, 2003(4):31—38.
[2] 孟金生, 关定华.海底沉积物的声学方法分类[J].声学学报, 1982, 7(6):337—343.
[3] 王正垠, 马远良.宽带声呐湖底沉积物分类研究[J].声学学报, 1996, 4:517—524.
[4] 刘建国, 李志舜.基于连续小波变换的湖底回波特征提取[J].西北工业大学学报, 2006(1):111—114.
[5] 马艳, 李志舜.基于连续小波变换的水下目标特征提取与分类[J]. 系统工程与电子技术, 2003(3): 375—378.
[6] 赵建平, 黄建国, 谢一清.用小波变换进行水下回波边缘特征提取与分类识别[J]. 声学学报, 1998(1): 31—38.
[7] 高大治, 王宁, 林俊轩.基于相平面轨迹方法的海底底质分类研究[J].声学学报, 2005(5):447—451.
[8] 杨词银, 许枫. 基于二次反锐化掩模的多特征侧扫声纳成像海底底质分类[J]. 2005, 33(10):1841—1844.
[9] 卜英勇, 张超, 聂双双.基于离散小波变换的水下回波信号尾波包络特征提取[J]. 郑州大学学报(工学版), 2007(4): 80—83.
[10] 邓跃红, 聂双双.基于小波变换的水下超声波测距方法研究[J]. 郑州大学学报(工学版), 2007, 28(4):75—79.
[11] 杨顶辉, 滕吉文.各向异性介质中三分量地震记录的FCT有限差分模拟[J].石油地球物理勘探, 1997, 32(2):181—190.
[12] Zeng Y Q, He J Q, Liu Q H.The applieation of the perfeetly matehed layer in numerical modeling of wave propagation in poroelastic media[J].Geophsics, 2001, 66(4):1258—1266.
[13] 姚姚, 奚先.随机介质模型正演模拟及其地震波场分析[J]. 石油物探, 2002. 41(1): 31—36.
[14] 奚先, 姚姚.随机介质模型的模拟与混合型随机介质[J]. 地球科学-中国地质大学学报, 2002, 27(1): 67—71.
[15] Li C P, Liu X W.Study on the scales of heteroseneous geological bodies in random media[J]. Applied Geophysics, 2011(4):363—369.
[16] 李红星, 陶春辉.双相各向异性随机介质伪谱法地震波场特征分析[J]. 物理学报, 2009(4): 2836—2842.
[17] 殷学鑫, 刘洋.二维随机介质模型正演模拟及其波场分析[J]. 石油地球物理勘探, 2011(6): 862—872.
[18] 奚先, 姚姚.二维随机介质及波动方程正演模拟[J].石油地球物理勘探, 2001, 36(5):546—552.
[19] 奚先, 姚姚.二维弹性随机介质中的波场特征[J]. 石油地球物理勘探, 2004, 39(6): 679—685.
[20] 奚先, 姚姚.弹性随机介质模型的特征频率[J]. 地球物理学进展, 2005, 20(3): 681—687.
[21] Gary Mavko, Tapan Mukerji, Jack Dvorkin.The rock physics handbook:tools for seismic analysis in porous media[M]. Cambridge University Press, 2003.
[22] Gassmann F.Uber die Elastizitat porous media[J].Vier der natur Gesellschaft in zurich, 1951, 96:1—23.
[23] Gessrtsna J, Smit D C. Some aspects of elastic wave propagation in a fluid-saturated porous solids[J].Geophysics, 1990, 95:15643—15656.
[24] Simon Haykin.神经网络原理(第二版)[M].北京:机械工业出版社, 2004.
[25] 袁小芳, 王耀南. 基于混沌优化算法的支持向量机参数选取方法[J].控制与决策, 2006(1):111—117
[26] 林升梁, 刘志. 基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报, 2007(2):163—167.
[27] 王鹏, 朱小燕.基于RBF核的SVM的模型选择及其应用[J].计算机工程与应用, 2003(24):72—73.
[28] 姚姚.地震波场与地震勘探[M].北京:地质出版社, 2006.
[29] 裴正林.双相各向异性介质弹性波传播交错网格高阶有限差分法模拟[J]. 石油地球物理勘探, 2006, 41(2): 137—143.
[30] 杨顶辉.双相各向异性介质中弹性波方程的有限元解法及波场模拟[J].地球物理学报, 2002, 45(4):575—583.
[31] Zhu X, McMechan G A.Numerical simulation of seismic responses of poroelastic reservoirs using Biot theory[J].Geophysics, 1991, 56(3):328—339.
[32] 王东, 张海澜, 王秀明.部分饱和孔隙岩石中声波传播数值研究[J].地球物理学报, 2006, 49(2):524—532.
[33] 董良国, 马在田, 曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究[J].地球物理学报, 2000, 43(6):856—864.
[34] Cortes C, Vapnik V.Support vector networks[J].Machine Learning, 1995, 20:273—297.
[35] Vapnik V N.Statistical learning theory[M]. New York: Wiley, 1998.
[36] 曾建潮, 介婧, 崔志华.微粒群算法[M].北京:科学出版社, 2004.
[37] Ingrid Daubechies.小波变换十讲[M].北京:国防工业出版社, 2004.
[38] 陶春辉, 金翔龙, 许枫.海底声学底质分类技术的研究现状与前景[J]. 东海海洋, 2004(3): 28—33.
[39] 许枫.基于Hilbert-Huang变换的瞬时频率法用于水下沉积物分类[J].应用声学, 2008(3):200—206.
[40] 黄海宁, 李志舜.湖底沉积物分类的新方法研究[J].西北工业大学学报, 1998(3):421—426.
[41] 张超.基于尾波包络特征提取的超声波海底沉积物分类识别研究[D].湖南:中南大学, 2008.
[42] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13: 937—968.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133