全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

20世纪太平洋海温变化中人为因子与自然因子贡献的模拟研究

DOI: 10.3969/J.ISSN.0253-4193.2014.03.006, PP. 48-60

Keywords: 气候系统模式,20世纪太平洋海温变化,自然因子,人为因子,内部变率

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于中国科学院大气物理研究所大气科学和地球流体力学国家重点实验室(LASG/IAP)发展的气候系统模式FGOALS_gl对20世纪太平洋海温变化的模拟,讨论了自然因子和人为因子对20世纪太平洋海温变化的相对贡献。观测资料表明,20世纪太平洋平均的SST变化主要分为3个时段:20世纪上半叶的增暖,40—70年代的微弱变冷,70年代之后的迅速增暖。20世纪太平洋SST变化的主导模态是全海盆尺度的振荡上升模态,其次为PDO振荡型,在70年代末PDO存在明显的年代际转型。通过全强迫试验、自然强迫试验、控制试验对上述现象进行归因分析,结果表明,人为因子和内部变率都对第一次增暖有贡献,而人类活动(主要是温室气体的增加)是70年代之后太平洋SST迅速增暖的主要原因。分区域来看,在两个增暖时段中,影响黑潮延伸体区SST变化的主要是自然因子和内部变率,影响其它海域SST变化的则主要是人为因子。全强迫试验可以较好的模拟出前两个模态的空间分布及时间序列。在没有人为因子的影响下,PDO成为太平洋海温变化的主导模态,其年代际转变发生在60年代中期,意味着人为因子是全海盆振荡增暖的主导原因,并且它使得年代际转型滞后了10a。因此,自然因子是导致SST年代际转型中的主导因子,人为因子有Z“调谐”作用。

References

[1]  IPCC. Climate Change 2007: The Physical Science Basis[G]//Solomon S, Qin M, Manning Z, et al. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovermental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007: 996.
[2]  Trenberth K E, Jones P D, Ambenje P, et al. Observations: Surface and atmospheric climate change[G]//Solomon S, Qin D, Manning M, et al. Climate Change 2007, The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press, 2007: 236—336.
[3]  Zhou Tianjun, Yu Rucong. Twentieth century surface air temperature over China and the globe simulated by coupled climate models[J]. Journal of Climate, 2006, 19(22): 5843—5858.
[4]  周天军, 李立娟, 李红梅, 等.气候变化的归因与预估模拟研究[J]. 大气科学, 2008, 32(4): 906—922.
[5]  Stott P A, Tett S F B, Jones G S, et al. External control of 20th century temperature by natural and anthropogenic forcings[J]. Science, 2000, 290: 2133—2137.
[6]  Thomas J C. Causes of climate change over the past 1000 years[J]. Science, 2000, 289: 270—277.
[7]  Delworth T L, Knutson T R. Simulation of early 20th century global warming[J]. Science, 2000, 287: 2246—2250.
[8]  Meehl G A, Washington W M, Ammann C M, et al. Combinations of natural and anthropogenic forcings in twentieth-century climate[J]. J Climate, 2004, 17: 3721—3727.
[9]  Knutson T R, Delworth T L, Dixon K W, et al. Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 Coupled Models[J]. J Climate, 2006, 19: 1624—1651.
[10]  李立娟, 王斌, 周天军. 外强迫因子对20世纪全球变暖的综合影响[J]. 科学通报, 2007, 52(15): 1820—1825.
[11]  Meehl G A, Arblaster J M, Branstator G, et al. A coupled air-sea response mechanism to solar forcing in the Pacific region[J]. J Climate, 2008, 21: 2883—2897.
[12]  Mantua N J, Hare S R, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bull Amer Meteor Soc, 1997, 78(6): 1069—1079.
[13]  Mantua N J, Hare S R. The Pacific decadal oscillation[J]. Journal of Oceanography, 2002, 58: 35—44.
[14]  Chang P, Giese B S, Ji L, et al. Decadal change in the south tropical Pacific in a global assimilation analysis[J].Geophys Res Lett, 2001, 28(18): 3416—3464.
[15]  Bratcher A J, Giese B. Tropical Pacific decadal variability and global warming[J].Geophys Res Lett, 2002, 29(19): 24-1—24-4.
[16]  杨修群, 朱益民, 谢倩, 等. 太平洋年代际振荡的研究进展[J]. 大气科学, 2004, 28(6): 979—992.
[17]  Meehl G A, Hu Aixue, Santer Benjiamin D. The Mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Climate, 2009, 22: 780—792.
[18]  吴春强, 周天军, 宇如聪, 等. 热通量和风应力影响北太平洋SST年际和年代际变率的数值模拟[J]. 大气科学, 2009, 33(2): 261—274.
[19]  Zhou T J, Yu R C, Li Z X. ENSO-independent variability over the mid-latitude North Pacific: Observation and air-sea coupled model simulation[J]. Adv Atoms Sci, 2002, 19(6): 1128—1147.
[20]  Zhou T J, Wu B, Wen X Y, et al. A fast version of LASG/IAP climate system model and its 1 000-year control integration[J]. Adv Atmos Sci, 2008, 25(4): 655—672.
[21]  Compo G P, Whitaker J S, Sardeshmukh P D, et al. The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(654): 1—28.
[22]  Duchon C E. Lanczos filtering in one and two dimensions[J]. Journal of Applied Meteorology, 1979, 18: 1016—1022.
[23]  Thompson D W J, Kennedy J J, Wallace J M, et al. A large discontinuity in the mid-twentieth century in observed global-mean surface temperature[J]. Nature, 2008, 453:646—649.
[24]  周天军, 王绍武, 张学洪. 大洋温盐环流与气候变率的关系研究: 科学界的一个新课题[J]. 地球科学进展, 2000, 15(6): 654—660.
[25]  Zhou T J, Li Bo, Man W M, et al. A comparison of the medieval warm period, little ice age and 20th century warming simulated by the FGOALS climate system model[J]. Chinese Sci Bull, 2011, 56: 3028—3041, doi: 10.1007/s11434-011-4641-6.
[26]  满文敏, 周天军, 张丽霞, 等. 20世纪温度变化中自然变率和人为因素的影响:基于耦合气候模式的归因模拟[J].地球物理学报, 2012, 55(2):372—383.
[27]  满文敏, 周天军, 张洁, 等. 气候系统模式FGOALS_gl模拟的20世纪温度变化[J]. 气象学报, 2011, 69(4): 644—654.
[28]  Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J Geophys Res, 2003, 108(D14):4407, doi:10.1029/2002JD002670.
[29]  D\'Orgeville M, Peltier W R. On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: Might they be related?[J]. Geophys Res Lett, 2007, 34:L23705, doi:10.1029/2007GL031584.
[30]  Xie S P, Deser C, Vecchi G A, et al. Global warming pattern formation: Sea surface temperature and rainfall[J]. J Climate, 2010, 23: 966—986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133