全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铁对三角褐指藻生长、光合作用及生化组成的影响

, PP. 110-116

Keywords: ,生长,光合作用,生化组成

Full-Text   Cite this paper   Add to My Lib

Abstract:

近来许多研究表明,不论是在无机氮丰富还是贫乏的水域,铁元素的供应对于浮游植物的生物量、生长率、种类组成及初级生产力均会产生影响。通过室内培养,研究了铁对三角褐指藻生长、光合作用以及细胞生化组成的影响。实验结果表明,在其他营养盐充足的条件下,海水中铁浓度的变化对三角褐指藻的生长及光合作用均有显着影响。在5×10-7mol/dm3铁浓度时,三角褐指藻可达到其最大光合作用速率。在添加铁的条件下,三角褐指藻细胞多种生化组成受到不同程度的影响,其中叶绿素a含量变化幅度最大,增加了25%~35%,叶绿素c、类胡萝卜素含量也有一定程度的增加,但增长幅度要小于叶绿素a;碳水化合物的含量增加了5%~10%,蛋白质含量的增加幅度在5%~15%之间;超氧化物歧化酶(SOD)的活性及DCMU荧光增强比(Fd/F)也呈明显的增加趋势。铁是海洋初级生产过程中的一种限制因子。

References

[1]  Mertin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 1988, 331:341~343
[2]  Martin J H, Fitzwater S E, Gordon R M. Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles, 1990, 4:5~12
[3]  Martin J H, Gordon RM, Fitzwater S E. The rose for iron. Limnol Oceancgr, 1991, 36:1 793~1 802
[4]  Martin J H, Fitzwater S E, Gordon R M et al. Iron, primary productivity and carbon-nitrogen flux studies during the JGOFS, North Atlantic Bloom Experiment. Deep-Sea Res, 1993, 40: 115~134
[5]  Keir R S. Ironing out greenhouse effects. Nature, 1991, 349:198
[6]  陈慈美,蔡阿根,陈雷. 铁对海洋硅藻的生物活性形式及其对藻类生长的影响.海洋通报,1993,12(3):49~55
[7]  林昱,唐森铭,陈孝麟等. 可溶性铁对某些硅藻赤潮生物增殖的影响.海洋通报,1994,13(5):14~18
[8]  Parsons T R, Maita Y, Lalli C M. A Manual of Chemical and Biological Methods for Sea water AnaLysis. Pergamon Press, 1984
[9]  Dubios H, Gilles R S. Colorimetric method for determination of sugars and related substances. Amdytical Chemistry, 1956, 28:250
[10]  李建武,萧能庚,余瑞元等. 生物化学实验原理和方法.北京:北京大学出版社,1994
[11]  潘瑞炽,董愚得编.植物生理学(上册,第二版).北京:高等教育出版社,1991
[12]  Green R M, Gelder R J, Falkowski P G. Effect of iron-limitation on photosynthesis in a marine diatom. Limnol Oceanogr, 1991, 36:1772~1782
[13]  Salin M L. Toxic oxygen species and protective systems of the chloroplast. Plant Physiol, 1987, 72: 681~689
[14]  Leidi E O. Gomez M, de la M D Guardia. Evaluation of catalase and peroxidase as indicators of Fe and Mn nutrition for soybean. J Plant Nutr, 1986, 9: 1239~1249
[15]  Spiller S C, Castelfranco A M, Castelfranco P A. Effects of iron and oxygen on chlorophyll biosynthesis I. In vivo observations on iron and oxygen-deficient plants. Plant Physiol, 1982, 69: 107~111
[16]  Chereskin B, Castelfranco P. Effects of iron and oxygen on the biosynthetic pathway in etiochloroplasts. Ⅱ. Observations on isolated etiochloroplasts. Plant Physiol, 1982, 69: 112~116
[17]  Green R M, Geider R J, Kolber Z et al. Iron-induced changes in light harvesting photochemical energy conversion processes in eukaryotic algae. Plant Physiol, 1992, 100: 565~575
[18]  Martin J H, Coale K H, Johnson K S et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific. Nature, 1994, 371: 123~129
[19]  Coale K H, Johnson K S, Fitzwater S E et al. A massive phtoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 1996, 383: 495~501
[20]  郭卫东,章小明,杨逸萍等. 中国近岸海域潜在性富营养化程度的评价. 台湾海峡,1998,17(1):64~70

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133