RAHMSTORF S. The thermohaline ocean circulation: a system with dangerous thresholds [J]. Climatic Change, 2000, 46: 247-256.
[2]
DIJSTRA H A. A dynamical systems approach to the large scale ocean circulation and El Nino [A]. Nonlinear Physical Oceanography [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000. 18-21.
DANSGAARD W, WHITE J W C, JOHNSEN S J. The abrupt termination of the younger dryas climate event [J]. Nature, 1989, 339: 532-534.
[6]
SHAFFER G, OLSEN S M. Sensitivity of the thermohaline circulation and climate to ocean exchanges in a simple coupled model [J]. Clim Dyn, 2001, 17: 433-444.
[7]
te RAA L A, DIJKSTRA H A. Instability of the thermohaline ocean circulation on interdecadal timescales [J]. J Phys Oceanogr, 2002, 32: 138-160.
[8]
TIMMERMANN A, LOHMANN G. Noise-induced transitions in a simplified model of the thermohaline circulation [J]. J Phys Oceanogr, 2000, 30: 1 891-1 900.
[9]
VELEZ-BELCHI P, ALVAREZ A, COLET P, et al. Stochastic resonance in the thermohaline circulation [J]. Geophys Res Lett, 2001, 28: 2 053-2 056.
[10]
GANOPOLSKI A, RAHMSTORF S. Abrupt glacial climate changes due to stochastic resonance [J]. Phys Rev Lett, 2002, 88(3): 038501.
[11]
DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Evidence for general instability of past climate from 250-ka ice-core record [J]. Nature, 1993, 364: 218-220.
[12]
KURTZE D A, RESTREPO J M. Advective time lags in box models [J]. J Phys Oceanogr, 2001, 31: 1 828-1 842.
[13]
DELWORTH T L, MANABE S, STOUFFER R J. Interdecadal variation of the thermohaline circulation in a coupled ocean atmosphere model [J]. J Climate, 1993, 6: 1 993-2 011.
[14]
BJERKNES J. Atlantic air-sea interaction [J]. Advances in Geophysics, 1964, 10: 1-82.
[15]
DELWORTH T L, GREATBATCH R J. Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing [J]. J Climate, 2000, 13: 1 481-1 495.
[16]
DELWORTH T L, MANN M E. Observed and simulated multidecadal variability in the Northern Hemisphere [J]. Clim Dyn, 2000, 16: 661-676.
[17]
WANNER H, BRONNIMANN S, CASTY C, et al. North Atlantic Oscillation-Concepts and studies [J]. Surv Geophys, 2001, 22: 321-382.
[18]
SELTEN F M, HAARSMA R J, OPSTEEGH J D. On the mechanism of North Atlantic decadal variability [J]. J Climate, 1999, 12: 1 956-1 973.
[19]
MARSH R. Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes [J]. J Climate, 2000, 13: 3 239-3 260.
[20]
GREATBATCH R J, ZHANG S. An interdecadal oscillation in an idealized ocean basin foced by constant heat flux [J]. J Climate, 1995, 8: 82-91.
[21]
HUCK T, COLIN de VERDIERE A, WEAVER A J. Interdecadal variability of thermohaline circulation in box-ocean models forced by fixed surface fluxes [J]. J Physical Oceanography, 1999, 29: 865-892.
[22]
YIN F L. A mechanistic model of ocean interdecadal thermohaline oscillations [J]. J Physical Oceanography, 1995, 25: 3 239-3 246.
[23]
WEIJER W, de RUIJTER W P M, DIJKSTRA H A. Stability of the Atlantic overturning circulation: competition between Bering Strait freshwater flux and Agulhas heat and salt sources [J]. J Phys Oceanogr, 2001, 31: 2 385-2 402.
[24]
LOCKWOOD L G. Abrupt and sudden climatic transitions and fluctuations: a review [J]. International Journal of Climatology, 2001, 21: 1 153-1 179.
[25]
APPENZELLER C, STOCKER T F, SCHMITTNER A. Natural climate variability and climate change in the North-Atlantic European region: change for surprise [J]. Integrated Assessment, 2000, 1: 301-306.
[26]
WUNSCH C. What is the thermohaline circulation [J]. Science, 2002, 298: 1 180-1 181.
[27]
TRENBERTH K E, SOLOMON A. The global heat balance: heat transports in the atmosphere and ocean [J]. Clim Dyn, 1994, 10: 107-134.
[28]
SCHULZ H, von RAD U, ERLENKEUSER H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110 000 years [J]. Nature, 1998, 393: 54-57.
[29]
STOMMEL H. Thermohaline convection with two stable regimes of flow [J]. Tellus, 1961, 2: 244-230.
[30]
ALLEY R B, CLARK P U, KEIGWIN L D, et al. Making sense of millennial scale climate change [A]. CLARK P U, WEBB R S, KEIGWIN L D. Mechanisms of Global Climate Change at Millennial Time Scales. Geophysical Monograph, Vol.112 [M]. Washington: American Geophysical Union, 1999. 385-394.
[31]
BROCKER W S. What drives glacial cycles [J]. Sci Amer, 1990, 262: 49-56.
[32]
OKA A, HASUMI H, SUGINOHARA N. Stabilization of thermohaline circulation by wind-driven and vertical diffusive salt transport [J]. Clim Dyn, 2001, 18: 71-83.
[33]
PALMER T N. A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic-dynmamic parameterisation in weather and climate perdiction models [J]. Quart J Roy Meteor Soc, 2001, 127: 279-304.
[34]
MONAHAN A H, TIMMERMANN A, LOHMANN G. Comments on" Noise-induced transitions in a simplified model of the thermohaline circulation" [J]. J Phys Oceanogr, 2002, 32: 1 112-1 116.
[35]
LEVITUS S. Interpentadal variability of salinity in the upper 150 m of the North Atlantic Ocean, 1970-1974 versus 1955-1959 [J]. J Geophys Res, 1989, 94: 9 679-9 685.
KUSHNIR Y. Interdecadal variations in North Atlantic surface temperature and associated atmospheric conditions [J]. J Climate, 1994, 7: 141-157.
[41]
SEAGER R, KUSHNIR Y, VISBECK M, et al. Causes of Atlantic Ocean climate variability between 1958 and 1998 [J]. J Climate, 2000, 13: 2 845-2 862.
[42]
EDEN C, JUNG T. North Atlantic interdecadal variability: Oceanic response to the North Atlantic oscillation (1865-1997) [J]. J Climate, 2001, 14: 676-691.
[43]
CHEN F, GHIL M. Interdecadal variability of thermohaline circulation and high-latitude surface fluxes [J]. J Phys Oceanogr, 1995, 25: 161-167.
[44]
HUCK T, VALLIS G K. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations [J]. Tellus Ser A-Dyn, Meteorol Oceanol, 2001, 53: 526-545.