全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长江口附近海域台风浪的数值模拟——以鹿沙台风和森拉克台风为例

, PP. 23-33

Keywords: SWAN波浪模型,长江口,台风浪,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用SWAN波浪模型计算长江口附近海域的台风浪,鉴于长江河口岸界和地形复杂,拟采用曲线网格.为证实曲线网格下的SWAN模型对于复杂地形的有效性,首先选用美国特拉华大学波浪水池实验资料对SWAN模型进行检验,结果表明利用曲线网格能不过多增加计算量而提高关键区域的计算精度.以0215号鹿沙台风和0216号森拉克台风为例,将SWAN模型应用到长江口附近海域,进行台风浪的数值模拟.通过浮标测站实测资料验证,表明有效波高计算值与实测值符合良好.通过综合分析模型计算的波浪场,说明SWAN模型能合理地反映长江口附近海域台风浪的分布.

References

[1]  <上海市海岛资源综合调查报告>编写组.上海市海岛资源综合调查报告[R].上海:上海科学技术出版社,1996.13-14.
[2]  BERKHOFF J C W. Computation of combined refraction- diffraction[A]. Proc of the 13th Conf on Coastal Engineering:Vol. 1. [C]. New York: ASCE, 1972, 471-490.
[3]  KIRBY J T. A general wave equation for wave over rippled beds[J]. J Fluid Mech, 1986, 162: 171-186.
[4]  NADAOKA K, BEJI S, NAKAGAWA Y. A fully-dispersive nonlinear wave model and its numerical solution[ A]. Proc 24th Int Conf Coastal Engineering[C]. Kobe, Japan, New York: ASCE, 1994. 427-441.
[5]  ISOBE M. Time-dependent mild-slope equation for random waves[A]. Proc 24th Int Conf Coastal Engineering[C]. Kobe, Japan, New York: ASCE, 1994. 285-299.
[6]  PEREGRINE D H. Long wave on a beach[J]. J Fluid Mech, 1965, 27(4): 815-827.
[7]  MADSEN P A, SCHAFFER H A. Higher order Boussinesq-type equations for surface waves-derivation and analysis [J]. Phil Trans Roy Soc, London A, 1998, 356: 1-60.
[8]  BOOIJ N, HOLTHUIJSEN L H, RIS R C. The SWAN wave model for shallow water[A]. Proceedings of 24th International Conference on Coastal Engineering:Vol. 1[C]. Orlando, 1996. 668-678.
[9]  OU Shan-Hwei, LIAU Jian-Ming, HSU Tai-Wen, et al. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan[J ]. Ocean Engineering, 2002, 29: 947-971.
[10]  朱首贤,沙文钰,丁平兴,等.近岸非对称型台风风场模型[J].华东师范大学学报(自然科学版),2002,(3):66-71.
[11]  RADDER A C. On the parabolic equation method for water-wave propagation[J]. J Fluid Mech, 1979, (1): 159-176.
[12]  张洪生,丁平兴,赵海虹.一般曲线坐标系下波浪传播的数值模拟[J].海洋学报,2003,25(1):110-119.
[13]  KIRBY J T, DALRYMPLE R A. An approximate model for nonlinear dispersion in monochromatic wave propagation models[J]. Coastal Engineering, 1987, 9: 545-561.
[14]  ZHAO Y, ANASTASIOU K. Economical random wave propagation modeling taking into account nonlinear amplitude dispersion[J]. Coastal Engineering, 1993, 20: 59-83.
[15]  李瑞杰.考虑非线性弥散影响的波浪变形数学模型[J].海洋学报,2001,23(1):102-108.
[16]  WEIG, KIRBYJT, GRILL I, ST, etal. A fully nonlinear Boussinesq model for surface waves : Part Ⅰ. Highly nonlinear unsteady waves[J]. J Fluid Mech, 1995, 294: 71-92.
[17]  WAMDI GROUP. The WAM model-a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18:1 775-1 810.
[18]  TOLMAN H L. The numerical model WAVEWATCH: a third generation model for the hindcasting of wind waves on tides in shelf seas: Report No. 89- 2 [ R]. Communication on Hydraulic and Geotechnical Engineering, Delhi University of Technology, 1989.
[19]  陈希,沙文钰,闵锦忠.台湾岛邻近海域台风浪的模拟研究[J].海洋预报,2002,19(4):1-9.
[20]  HOLTHUIJSEN L H, BOOIJ N, RIS R C, et al. SWAN User Manual (Cycle Ⅲ version 40.11)[M]. Delft:Delft University of Technology, 2000.
[21]  BOUWS E, GUNTHER H, ROSENTHAL W, et al. Similarity of the wind wave spectrum in finite depth water[J]. Journal of Geophysical Research, 1985, 90: 975-986.
[22]  BORGMAR, L E. Directional spectrum estimation for Sxy gages: Technical Report[R]. Vicksburg, Miss:Coastal Engineering Research Center, 1984.
[23]  FUJITA T. Pressure distribution in typhoon[J]. Geophy Mag, 1952, 23: 437-452.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133