全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大洋岛屿玄武岩低温蚀变作用及其对大洋过渡金属循环的贡献

, PP. 55-68

Keywords: 大洋岛屿玄武岩,低温蚀变作用,大洋金属循环,理论计算,富钴结壳

Full-Text   Cite this paper   Add to My Lib

Abstract:

用化学方法和ICP-MS方法分别对中、西太平洋海山富钴铁锰结壳产出区玄武岩的主元素、微量元素和稀土元素(REE)含量进行了测定,结果表明,研究区玄武岩经受了强烈的洋底低温蚀变作用,主元素成分发生了明显的变化,失去了原岩的特征.样品与新鲜大洋岛屿玄武岩(OIB)极为相似的稀土元素配分模式和微量元素含量特征表明,所研究的岩石属典型的大洋板内玄武岩.受洋底低温蚀变作用的影响,样品的Al2O3,Fe2O3,MnO、K2O,P2O5含量增加,MgO,FeO的含量降低.蚀变作用使大洋岛屿玄武岩中的镁、铁等活动组分大量流失,从而表现出相对富SiO2的特征(标准矿物计算结果中出现石英).由于蚀变作用,活动组分的流失使样品的REE相对富集,而富REE铁锰氧化物在玄武岩气孔和裂隙中的沉淀不仅使样品的REE含量增大,而且引起轻稀土元素(LREE)与重稀土元素(HREE)分馏,表现为∑c(Ce)/∑c(Yb)值增大.以REE富集机制为基础,对样品中铁锰氧化物的沉淀量和单位质量新鲜玄武岩中活动组分的流失量进行了理论计算,结果表明,因低温蚀变作用所引起的新鲜玄武岩的单位质量亏损为0.150~0.657,而单位质量新鲜玄武岩中铁锰氧化物的沉淀量为0.006~0.042.主元素中以铁、镁的流失亏损最为明显,新鲜玄武岩中铁、镁的流失比例分别为18.28%~70.95%和44.50%~93.94%,超过了岩石总量的流失亏损比例(15.0%~65.7%),因而样品相对贫铁、镁.其他元素的流失量和流失比例都很好地印证了地球化学研究的结果.样品中铝、钾、磷负的流失量是由于沸石在岩石气孔中的充填和岩石的磷酸盐化.理论计算结果和地球化学研究都表明,大洋岛屿玄武岩的低温蚀变向海水提供了大量金属,这是大洋海水中金属循环的重要环节.

References

[1]  MOORE J G. Rate of palagonitization of submarine basalt adjacent to Hawaii [R]. U S Geol Surv Prof Pap, 550-D. 1966. 163-171.
[2]  THOMPSON G. Metamorphic and hydrothermal processes: basalt-seawater interactions [A]. FLOYD P A. Oceanic Basalts [M]. Glasgow: Blackie and Sons, 1991. 148-173.
[3]  STAUDIGEL H, HART S R. Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget [J]. Geochim Cosmochim Acta, 1983, 47 : 337- 350.
[4]  FURNES H, STAUDIGEL H. Biological mediation in ocean crust alteration: how deep is the deep biosphere? [J]. Earth Planet Sci Lett, 1999, 166: 97-103.
[5]  PICHLER T, RIDLEY W I, NELSON E. Low-temperature alteration of dredged volcanic from the Southern Chile Ridge: additional information about early stages of seafloor weathering [J]. Mar Geol, 1999, 159: 155-177.
[6]  CHAMLEY H. Clay Sedimentology [M]. Berlin: Springer, 1989. 291-329.
[7]  HONNOREZ J. The aging of the oceanic crust at low temperature [A]. EMILIANI C. The Sea: Vol. 7. The Oceanic Lithosphere [M]. New York: Wiley & Sons, 1981. 525-587.
[8]  MUKHOPADHYAY R, IYER S D, GHOSH A K. The Indian Ocean nodule field: petrotectonic evolution and ferromanganese deposits [J]. Earth Science Reviews, 2002, 60: 67-130.
[9]  CHESTER R. Marine Geochemistry [M]. 2th ed. Oxford, Blackwell Science, 2000. 88-97.
[10]  SEYFRIED W E Jr, MOTTL M J. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions [J]. Goechim Cosmochim Arca, 1982, 46:985-1002.
[11]  李学伦.海洋地质学[M].青岛:青岛海洋大学,1997..
[12]  MOTTL M J, HOLLAND H D. Chemical exchange during hydrothermal alteration of basalt by seawater-I. Experimental results for major and minor components of seawater [J]. Geochim Cosmochim Acta, 1978, 42:1103-1115.
[13]  SEYFRIED W E Jr, BISCHOFF J L. Low temperature basalt alteration by seawater: an experimental study at 70℃ and 150℃[J]. Geochim Cosmochim Arca, 1979, 43: 1937-1947.
[14]  SEEWAID J S, SEYFRIED W E Jr. The effect of temperature on metal mobility in subseafloor hydrothermal system: constraints from basalt alteration experiments [J]. Earth Planet Sci Lett, 1990, 101: 388-403.
[15]  党志 侯瑛.玄武岩—水相互作用的溶解机理研究[J].岩石学报,:.
[16]  QI L,GReGOIRE D C. Determination of trace elements in twenty-six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry [J]. Geostandards New Letters, 2000, 24(1): 51-63.
[17]  CLAGUE D A, JACKSON E D, WRIGHT T L. Petrology of Hualalai volcano, Hawaii: implication for mantle composition [J]. Bull Volcano, 1980, 43: 641-656.
[18]  SCHILLING J G, ZAJAC M, EVANS R, et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 27°N to 73°N [J]. Am Sci, 1983, 283: 510-586.
[19]  HEIN J R, KOSCHINSKY A, BAU M,et al. Cobalt-rich ferromanganese crusts in the Pacific [A]. CRONAN D. Handbook of Marine Mineral Deposits [M]. Boca Raton: CRC Press,1999. 239-279.
[20]  TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution [M]. Oxford: Blackwell Scientific Publication, 1985. 209-230.
[21]  HART R. Chemical exchange between sea water and deep ocean basalts [J]. Earth Planet Sci Lett, 1970, 9(3): 269-279.
[22]  HEKINIAN R. Chemical and mineralogical differences between abyssal hill basalts and ridge tholeiites in the Eastern Pacific Ocean [J]. Mar Geol, 1971, 11: 77-91.
[23]  MIYASHIRO A, SHIDO F, EWING M. Diversity and origin of abyssal tholeiite from the Mid-Atlantic Ridge near 24° and 30° north latitude [J]. Contrib Mineral Petrol, 1969, 23: 38-52.
[24]  HEIN J R, MORGAN C L. Influence of substrate rocks on Fe-Mn crust composition [J]. Deep-Sea Research, 1999, 46: 855-875.
[25]  邱家骧.岩浆岩岩石学[M].北京:地质出版社,1985..
[26]  Le MAITRE R W. A Classification of Igneous Rocks and Glossary of Terms [M]. Oxford: Blackwell Scientific Publications, 1989. 193.
[27]  康显桂 康长生 杨荣勇.东太平洋海盆多金属结核玄武岩核心研究[J].高校地质学报,1998,4(2):147-154.
[28]  王中刚.稀土元素地球化学[M].北京:科学出版社,1989..
[29]  陈德潜 陈刚.实用稀土元素地球化学[M].北京:冶金工业出版社,1990.171-172.
[30]  HOFMANN A W, JOCHUM K P. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project [J]. Geophys Res, 1996, B101: 11831-11839.
[31]  张旗.如何正确使用玄武岩判别图[J].岩石学报,:.
[32]  SUN S S. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs [J]. Phil Trans R Soc Lond,1980, A297: 409-445.
[33]  SAUDERS A D, TARNEY J. Geochemical characteritics of basaltic volcanism within back-arc basins [A]. KOKELAAR B P, HOWELLS M F. Marginal Basin Geology:Vol. 16 [M]. London: Spec Publ Geol Soc, 1984. 59-76.
[34]  MCDONOUGH W F, SUN S S, RINGWOOD A E. K, Rb and Cs in the earth and moon and the evolution of the earth\\'s mantle [J]. Geochim Cosmochim Acta, 1992, 56:1001-1012.
[35]  WILSON M. Igneous Petrogenesis [M]. London: Unwin Hyman, 1989. 245-285.
[36]  LANGMUIR C H, BENDER J F, BENCE A E, et al. Petrogenesis of basalts from the FAMOUS area: mid-Atlantic ridge [J]. Earth Planet Sci Lett, 1977, 36: 133-156.
[37]  SUN S S. Chemical composition and origin of the earth\\'s primitive mantle [J]. Geochim Cosmochim Acta, 1982, 46: 179-192.
[38]  PEARCE J A. Role of the sub-continental lithosphere in magmas genesis at active continental margins [A]. HAWKESWORTH C J, NORRY M J. Continental Basalts and Mantle Xenoliths [M]. Nantwich: Shiva, 1983. 230-249.
[39]  PEARCE J A, CANN J R. Tectonic setting of basalt volcanic rocks determined using trace element analysis [J]. Earth Planet Sci Lett, 1973, 19: 290-300.
[40]  CONDIE K C. Plate Tectonic and Crustal Evolution [M]. New York: Pergamon Press, 1982. 258.
[41]  MACGEEHAN P J, MACLEAN W H. An Archaean sub-seafloor geothermal system, “calc-alkali” trends, and massive sulphide genesis[J]. Nature, 1980, 286: 767-771.
[42]  HUMPHRIES S E. The mobility of the rare earth elements in the crust [A]. HENDERSON P. Rare Earth Element Geochemistry [M]. Amsterdam: Elsevier, 1984. 315-341.
[43]  NCBIRNEY A R. Igneous Petrology [M]. San Francisco: Freeman, Cooper, 1984. 504.
[44]  WILLIAMS D L, von HERZEN R P. Heat loss from the earth: new estimate [J]. Geology, 1974, 2: 327-328.
[45]  HALBACH P, HEBISCH U, SCHERHAG C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control [J]. Chem Geol, 1981, 34: 3-17.
[46]  SEIBOLD E, BERGER W H. The Sea Floor-An Introduction to Marine Geology [M]. Berlin: Springer-Verlag. 1993. 289-294.
[47]  KOSCHINSKY A, HALBACH P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochim Cosmochim Acta, 1995, 59:5113-5132.
[48]  APLIN A C, CRONAN D S. Ferromanganese oxide deposits from the central Pacific Ocean: I. Encrustations from the Line Island Archipelago [J], Geochim Cosmochim Acta, 1985, 49: 427-436.
[49]  HEIN J R, MANHEIM F T, SCHWAB W C, et al. Ferromanganese crusts from Necker ridge, Horizon Guyot and S. P. Lee Guyot: geological considerations [J]. Mar Geol, 1985, 69:25-54.
[50]  GLASBY G P. Manganese: predominant role of nodules and crusts [A]. SCHULZ H D, ZABEL M. Marine Geochemistry[M]. 2nd ed. Berlin:Springer-Verlag, 2006. 371-428.
[51]  HALBACH P, PUTEANUS D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas [J]. Earth Planet Sci Lett, 1984, 68:73-87.
[52]  von BLANKENBURG F, O\\'NIONS R K, BELSHAW A, et al. Global distribution of beryllium isotopic in deep ocean water as derived from Fe-Mn crusts [J]. Earth Planet Sci Lett, 1996, 141: 213-226.
[53]  刘英俊 曹励明 李兆嶙 等.元素地球化学[M].北京:科学出版社,1984.187-193.
[54]  DE CARLO E H, MCMURTRY G M, KIM K H. Geochemistry of ferromanganese crusts from the Hawaiian Archipelago-I. Northern survey areas [J]. Deep-Sea Research, 1987, 34: 441-467.
[55]  KOSCHINSKY A, STASCHEIT A, BAU M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts [J]. Geochim Cosmochim Acta, 1997, 61: 4079-4094.
[56]  O\\'NIONS R K, CARTER S R, COHEN R S, et al. Pb, Nd and Sr isotope in oceanic ferromanganese deposits and ocean floor basalts [J]. Nature, 1978, 273: 435-438.
[57]  THOMPSON G. Hydrothermal fluxes in the ocean [A]. RILEY J P, CHESTER R. Chemical Oceanography [M]. New York: Academic Press, 1983. 271-337.
[58]  BANAKAR V K, PATTAN J N, MUDHOLKAR A V. Palaeoceanographic conditions during the formation of a ferromanganese crust from the Afanasiy-Nikitin Seamount, north central Indian Ocean: geochemical evidence [J]. Mar Geol, 1997,136:299-315.
[59]  邱家骧.应用岩浆岩岩石学[M].武汉:中国地质大学出版社,1991.155-224.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133