全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

秋季南黄海网采浮游生物的生物量谱

, PP. 71-80

Keywords: 浮游生物,生物量谱,黄海

Full-Text   Cite this paper   Add to My Lib

Abstract:

对2006年9月南黄海浮游生物网(孔径为70,160,505μm)采集样品内的浮游生物个体大小的粒径分布进行研究,确定各粒级大小的功能群组成,建立2006年秋季调查水域网采浮游生物的生物量谱,比较分析三个特征水域(黄海近岸、黄海中部及黄海和东海交汇区)的浮游生物生物量谱特征参数的异质性。结果表明:三种网采浮游生物粒级范围主要包括100pg/个~70ng/个的浮游植物和70ng/个~62mg/个的浮游动物。Sheldon型生物量谱为近似连续的波动曲线,标准型生物量谱为线型。总测区的标准生物量谱斜率和截距为-0.74和18.64,各个特征水域,黄海中部为-0.67和15.60、黄海近岸为-0.64和14.34、黄海、东海交汇区为-0.73和18.03。浮游动物种类多样性对标准生物量谱的特征参数具有较显著的影响。

References

[1]  SHELDON R W, PRAKASH A, SUTCHLIFFE W H. The size distribution of particles in the ocean [J]. Limnol Oceanogr, 1972, 17: 327--340.
[2]  邓可 张志南 黄勇 等.南黄海典型站位底栖动物粒径谱及其应用[J].中国海洋大学学报,2005,35(6):1005-1010.
[3]  赵帅营 韩博平.基于个体大小的后生浮游动物群落结构分析——以广东星湖为例[J].生态学报,2006,26(8):2646-2654.
[4]  左涛 王荣 陈来瞿等.春季和秋季东、黄海陆架区大型网采浮游动物群落划分[J].生态学报,2005,25(7):1531-1540.
[5]  ZUO T, WANG R, CHEN Y Q, et al. Autumn net copepods abundance and assemblages in relation to water masses on the continental shelf of the Yellow Sea and East China Sea[J]. Journal of Marine Systems, 2006, 59(1/2) :159--172.
[6]  孙军 刘东艳.浮游植物生物量研究:I.浮游植物生物量细胞体积转化法[J].海洋学报,:.
[7]  EPPLEY R W, REID F M, STRtCKI.AND J D. The ecology of the plankton off La Jolla, Callifornia, in the period April through September 1967 Par Ⅱ. Estimates of phytoplankton crop size, growth rate and primary production[J]. Bull Scrippe Inst Oceanogr, 1970, 17:33-42.
[8]  REEVE M R, BAKER L D. Production of two planktonic carnivores (chaetognath and ctenophore) in south Florida inshore waters [J]. Fish Bull, 1975, 73:238-248.
[9]  SZYPERJ P. Feeding rate of the chaetognath Sagitta enflatainnature[J]. Estua Coast Mar. Sci, 1978, 7:567-575.
[10]  SATAPOOMIN S. Carbon contents of some tropical Andaman Sea copepods[J]. J Plankton Research, 1999, 21(11):2117-2123.
[11]  TAKI K. Biomass and production of the Euphausia pacifica along the coastal waters of north-eastern Japan[J]. Fisheries Science,2006, 22:221-232.
[12]  WIEBE P, BOYD S, COX J. Relationships between zooplankton displacement volume, wet weight, dry weight and carbon[J]. Fish Bull, 1975, 73: 777-786.
[13]  RODRIIGUEZ J, MUI.I.IN M M. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem[J]. Limnol Oceanogr, 1986, 31(2): 361-370.
[14]  RICHARDSON A J, SCHOEMAN D S. Climate impact on plankton ecosystems in the Northeast Atlantic[J]. Science, 2004, 305 (5690):1609-1619.
[15]  SHANNON C E, WEAVER W. The mathematical theory of communication[M]. Urbana. University of Illinois Press, 1949:125.
[16]  WARWICK R M. Species size distributions in marine benthic communities[J]. Oecologia,1984, 61:32-41.
[17]  PIONTKOVSKI S A, WILLIAMS R, MEI.NIK T A. Spatial heterogeneity, biomass and size structure of plankton of the Indian Ocean: some general trends[J]. Mar Ecol Prog Ser, 1995, 117:219 -227.
[18]  HUNTLEY M E, ZHOU M, NORDHAUSEN W. Mesoscale distribution of zooplankton in the California Current in late spring, observed by Optical Plankton Counter[J]. J Mar Res, 1995, 53:647--674.
[19]  QUINONES RA, PLATT T, RODRIGUEZ J. Patterns of biomass--size spectra from oligotrophic waters of the Northwest Atlantic[J]. Progress in Oceanography, 2003, 57:405-427.
[20]  WANG R, ZUO T. The Yellow Sea Warm Current and the Yellow Sea Cold Bottom Water, their impact on the distribution of zooplank ton in the southern Yellow Sea[J]. Journal of Korean Society of Oceanography. 2004, 39 (1): 1-13.
[21]  王荣 李超伦 张武昌 等 苏纪兰 唐启升.不同粒径谱浮游动物的能值分析[R].苏纪兰,唐启升.中国海洋生态系统动力学研究:Ⅰ.渤海生态系统动力学过程[C].北京:科学出版社,2002.158-165.
[22]  JIN X. Long-term changes in fish community structure in the Bohai Sea, China[J]. Estuarine, Coastal and Shelf Science, 2004, 59: 163-171.
[23]  林岿璇 张志南 王睿照.东、黄海典型站位底栖动物粒径谱研究[J].生态学报,2004,24(2):241-245.
[24]  林秋奇 赵帅营 韩博平.广东流溪河水库后生浮游动物生物量谱时空异质性[J].湖泊科学,2006,18(6):662-669.
[25]  UYES I. Length Weight relationships of important zooplankton from the Inland Sea ofJapan[J]. J Oceanogr Soc Jap, 1982, 38(3): 149-158.
[26]  IKEDA T, SHIGA N. Production, metabolism and production/biomass (P/B) ratio of Themisto japonica (Crustacea: Amphipoda) in Toyama Bay, southern Japan Sea[J]. J Plankton Research, 1999, 21(2):299-308.
[27]  IGUCH N, 1KEDA T. Elementary composition(C, H, N ) of the euphausiid Euphausia pacifica in Toyama Bay, southern Japan Sea [J]. Plankton Biol Eeol, 1998, 45(1):79-84.
[28]  HOP(\\'ROFT R R, ROFF J C and CHAVEZ F P. Size paradigms in copepod communities: a re examination[J]. Hydrobiologia, 2001, 453/454 : 133 --141.
[29]  PLATT T, DENMAN K. The structure of pelagic marine ecosystems[J]. Rapp P V Re un Cons Int Explor Mer, 1978, 173:60-65.
[30]  王荣 王克.两种浮游生物网捕获性能的现场测试[J].水产学报,2003,27(增刊):98-102.
[31]  左涛 王俊 金显仕 等.春季长江口邻近外海网采浮游生物的生物量谱[J].生态学报,2008,28(3):1174-1182.
[32]  DICKIE I. M, KERR S R, BORDREAN P R. Size dependent process underlying regularities in ecosystems structure[J]. Ecological Monographys, 1987, 57(3):233-250.
[33]  ZHOU M, HUNTI.EY M E. Population dynamics theory of plankton based on biomass spectra[J]. Mar Ecol Prog Ser, 1997, 159:61-- 73.
[34]  SPRULES W G, MUNAWAR M. Plankton size spectra in relation to ecosystem productivity, size and perturbation[J]. Can J Fish Aquat Sci, 1986, 43:1789-1794.
[35]  KIMMEL D G, ROMAN M R, ZHANG X S. Spatial and temporal variability in factors affecting zooplankton dynamics in Chespeake Bay: Evidence from biomass size spectra[J]. Limnol Oceanogr, 2006, 51(1):131--141.
[36]  WANG R, ZUO T, WANG K. The Yellow Sea Cold Bottom Water an oversummering site for Calanus sinicus(Copepoda, Crustacea) [J]. Journal of Plankton Research,2003, 25(2):169-183.
[37]  唐启升.中国专属经济区海洋生物资源与栖息环境[R].北京:科学出版社,2006.263-306.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133