全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海底热液硫化物矿体内部流体混合过程的数值模拟:以大西洋TAG热液活动区为例

, PP. 52-61

Keywords: 热液硫化物矿体,流体混合过程,TAG热液活动区,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

大型海底热液硫化物矿体的形成机制是涉及多种控制因素的复杂地质过程,其中热液流体同海水的混合扮演着重要角色。大洋钻探计划(ODP)资料表明在大西洋TAG区热液硫化物矿体内部,热液流体同经过改造的海水之间发生着广泛的混合作用,这个过程在很大程度上控制着海底热液硫化物矿体的内部结构和化学组成。以TAG热液硫化物矿体为例,利用数值模拟方法模拟了热液流体与经过不同程度改造的海水的混合过程,试图探讨海水与热液流体混合在热液硫化物矿体形成中的作用。模拟计算结果表明:(1)来自矿体深部的热液流体与经围岩加热的下渗海水的混合是造成TAG热液活动区硬石膏大量沉淀的重要原因;(2)在热液流体与海水的混合过程中,混合流体的化学性质和矿物沉淀情况在330~310℃上下发生了较大变化,330~310℃是一个特殊的温度区域;(3)利用数值计算结果探讨了TAG热液活动区不同区块(TAG-1,TAG-2和TAG-5等)的流体混合作用和热液活动过程。

References

[1]  MILLS R A, DAMON A H, TIVEY M K. Fluid mixing and anhydrite precipitation within the TAG mound [J]. Proc ODP, Sci Results, 1998, 158:119-- 127.
[2]  TIVEY M K. Documenting textures and mineral abundance in minicores from the TAG active hydrothermal mound using X-ray computed tomography[J]. ProcODP, SciResults, 1998, 158: 5--26.
[3]  TIVEY M K, MILLS R A, DAMON A H. Temperature and salinity of fluid inclusions in anhydrite as indicators of seawater entrainment and heating in the TAG active mound [J]. Proc ODP, Sci Results, 1998, 158:179-190.
[4]  GEMMEI.L J B, SHARPER. Detailed sulfur isotope investigation of the TAG hydrothermal mound and stockwork zone, 26N, Mid- AtlanticRidge[J]. ProcODP, SciResults, 1998, 158: 71--84.
[5]  HUMPHIRSS E. Rare earth element composition of anhydrite: implications for deposition and mobility within the active TAG hydro thermal mound [J]. Proc ODP, Sci Results, 1998, 158:143--159.
[6]  FOUQUET Y, HENRY K, KNOTT R, et al. Geochemical section of the TAG hydrothermal mound [J]. Proc ODP, Sci Results, 1998, 158:363--387.
[7]  曾志刚 秦蕴珊 赵一阳 等.大西洋TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义[J].海洋与湖沼,2000,31(5):518-529.
[8]  曾志刚 翟世奎 等.大西洋中脊TAG热液区硫化物中流体包裹体的He-Ne-Ar同位素组成[J].中国科学:D辑,:.
[9]  蒋少涌 杨涛 李亮 赵葵东 凌洪飞.大西洋洋中脊TAG热液区硫化物铅和硫同位素研究[J].岩石学报,2006,22(10):2597-2602.
[10]  TIVET M K, HUMPHRIS S E, THOMPSON G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data[J]. J Geophys Res, 1995, 100(BT):12527--12555.
[11]  HOSHINO K, ITAMI T, SHIOKAWA R, et al. A possible role of boiling in ore deposition: a numerical approach [J]. Reso Geol, 2006, 56: 49--54.
[12]  JOHNSON J W, OELKERS E H, HELGESON H C. SUPCRT92-- a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1-bar to 5000 bar and 0 ℃ to 1000 ℃ [J]. Comput Geotech, 1992, 18: 899--947.
[13]  EDMOND J M, CAMPBEL L, GERMAN C R, et al. Time series studies of vent fluids from the TAG and MARK sites (1986,1990) Mid-Atlantic Ridge and a mechanism for Cu/Zn zonation in massive sulphide orebodies [M]// Hydrothermal Vents and Processes: Spe cial Publication. London. Geological Society of London, 1995: 77--86.
[14]  安伟.[D].青岛:中国海洋大学,2005,69-84.
[15]  PETERSEN S, HERIZIG P M, HANNINGTON M D. Fluid inclusion studies as a guide to the temperature regime within the TAG hy drothermal mound, 26N, Mid Atlantic Ridge[J]. Proc ODP, Sci Results, 1998, 158:16:3--178.
[16]  HUMPHRIS S E. Rare earth element composition of anhydrite: implications for deposition and mobility within the active hydrothermal mound[J]. ProcODP, Sci Results, 1998, 158: 143--159.
[17]  HERIZIG P M, PETERSEN S, HANNINGTON M D. Geochemistry and sulfur isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26 N[J]. Proc ODP, Sci Results, 1998, 158:47--70.
[18]  CHIBA H, UCHIYAMA N, TEAGIJE D A H. Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, 26N, MidLAtlantic Ridge [J]. Proc ODP, Sci Results, 1998, 158: 85--90.
[19]  GEMMEI.L J B, SHARPE R. Detailed sulfur isotope investigation of the TAG hydrothermal mound and stockwork zone, 26N, Mid-Atlantic Ridge [J]. ProcODP, Sci Results, 1998, 158:71-90.
[20]  HERZIG P M, PETERSEN S, HANNINGTON M D. Geochemistry and sulfur isotopic composition of the TAG hydrothermal mound, Mid Atlantic Ridge, 26 N[J]. Proc ODP, Sci Results, 1998, 158: 47--70.
[21]  CHIBA H, UCHIYAMA N, TEAGLE A H. Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid Atlantic Ridge, 26 N[J]. Proc ODP, Sci Results, 1998, 158: 85--90.
[22]  RONA P A, DAVIS E E, LUDWlNG R J. Thermal properties of TAG hydrothermal precipitates, Mid Atlantic Ridge, and comparison with Middle Valley, Juan de Fuca Ridge[J]. Proc ODP, Sci Results, 1998, 158: 329--335.
[23]  LUDWING R J, ITURRIN O, RONA P A. Seismic velocity porosity relationship of sulfide, sulfate, and basalt samples from the TAG hydrothermal mound[J]. Proc ODP, Sci Results, 1998, 158: 313--327.
[24]  曾志刚 秦蕴珊 翟世奎.大西洋洋中脊海底表层热液沉积物的铅同位素组成及其地质意义[J].青岛海洋大学学报,2001,31(1):103-109.
[25]  曾志刚 翟世奎 杜安道.大西洋洋中脊TAG热液区中块状硫化物的Os同位素研究[J].沉积学报,2002,20(3):394-398.
[26]  HOSHINO K, YAMAMOTO Y, GU X, et al. Preliminary examination of the ore-forming process by fluid mixing--a test of MIX99[J]. Reso Geol, 2000, 50: 185--190.
[27]  李怀明 翟世奎 于增慧 等.大西洋TAG热液活动区流体演化模式[J].中国科学:D辑,2008,38(8):1-10.
[28]  GALLANT R M, VON DAMN K L. Geochemical controls on hydrothermal fluids from the Kairei and Edmond vent fields, 23°-25°S, Central Indian Ridge[J]. Geochem Geophys Geosyst, 2006, 7:1--24.
[29]  DING K, SEYFIRED W E, ZHONG Z, et al. The in situ pH of hydrothermal fluids at mid-ocean ridges[J]. Earth Planet Sci Lett, 2005, 237: 167--174.
[30]  KNOTT R, FOUQUET Y, HONNOREZ J, et al. Petrology of hydrothermal mineralization: a vertical section through the TAG mound [J]. Proc ODP, Sci Results, 1998, 158: 5--26.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133