全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非培养手段分析珠江口淇澳岛海岸带沉积物中的古菌多样性

, PP. 114-122

Keywords: 珠江口,沉积物,古菌,16SrDNA,QC-PCR

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用古菌16SrDNA特异引物对珠江口淇澳岛海岸带沉积物中古菌的多样性及垂直分布特征进行研究。结果表明珠江口淇澳岛海岸带沉积物中古菌多样性丰富,大部分为新的不可培养古菌;泉古菌在整个沉积物柱中是优势菌群,约占81%;古菌多样性随沉积物深度增加而增加,区系结构也随深度变化而呈现出明显的不同,在表层沉积物中,88%的序列属于Ⅰ型海洋泉古菌(MGⅠ),而在中层和底层检测到的古菌序列大部分与不可培养的富含甲烷的环境序列有最高的同源性,并且有15%的克隆子序列属于甲烷八叠球菌目(Methanosarcinales)和甲烷微菌目(Methanomicrobiales)。QC-PCR结果表明珠江口淇澳岛海岸带沉积物中古菌含量丰富[(1.93±0.60)×106~6.45±0.25×10716SrDNA拷贝/g],呈现随深度增加含量增加的趋势。

References

[1]  DELONG E F. Archaea in coastal marine environments [J]. Proc Natl Acad Sci USA, 1992, 89:5685--5689.
[2]  PRESTON C M, WU K Y, MOLINSKI T F, et al. A psychrophilic crenarchaeon inhabits a marine sponge: cenarchaeum symbiosum gen. nov. , ap. nov. [J]. Proc Natl Acad Sci USA, 1996, 93:6241--6246.
[3]  BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623-626.
[4]  BURGGRAF S, HUBER H, STETTER K O. Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA se quencedata [J]. Int J Syst Bacteriol, 1997, 47:657--660.
[5]  KONNEKE M, BERNHARD A E, de la TORRE J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon [J]. Nature, 2005, 437(7058): 543--546.
[6]  CAI Wei-Jun, DAI Min han, WANG Yong-chen, et al. The biogeochemistry of inorganic carbon and nutrient in the Pearl River estuary and the adjacent northern South China Sea [J]. Continental Shelf Research, 2004, 24: 1301--1319.
[7]  吴白军.周怀阳 彭晓彤 等.甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J].科学通报,2006,51:2052-2059.
[8]  ZHOU J Z, BRUNS M A, TIEDJE J M. DNA recovery from soils of diverse composition [J]. Appl Environ Microbiol, 1996, 62 : 316-322
[9]  KREBS C J. Ecological Methodology [M]. New York: Harper and Row, 1989:654
[10]  MULLINS T D, BRITSCHGI T B, KREST R L, et al. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities [J]. Limnol Oceanogr, 1995, 40:148-- 158.
[11]  HECK K L, VAN BELLE G, SIMBERLOFF D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size EJ]. Ecology, 1975, 56:1459--1461.
[12]  LAURIE A D, JOHES G L. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR[J]. Appl Environ Microbiol, 2000, 66:1814--1817.
[13]  HUANG L N, CHEN Y Q, ZHOU H, et al. Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill [J]. FEMS Microbiol Ecol, 2003, 46(2):171--177.
[14]  KNITTEL K, LOSEKANM T, BOETIUS A, et al. Diversity and distribution of methanotrophic archaea at cold seeps [J]. Appl Environ Microbiol, 2005, 71(1): 467--479.
[15]  HALLAM S J, GIRGUIS P R, PRESTON C M, et al. Identification of Methyl Coenzyme M Reductase A (mcrA) Genes Associated with Methane--Oxidizing Archaea [J]. Appl Environ Microbiol, 2003, 69(9):5483--5491.
[16]  HERSHBERGER K L, BARNS S M, REYSENBACH A L, et al. Wide diversity of crenarchaeota [J]. Nature, 1996, 384:420.
[17]  MCINERNEY J O, WILKINSON M, PATCHING J W, et al. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep--sea deposit feeder [J]. Appl Environ Mierobiol, 1995, 61: 1646--1648.
[18]  BUCKLEY D H, GRABER J R, SCHMIDT T M. Phylogenetic analysis of nonthermophilic members of the kingdom crenarchaeota and their diversity and abundance in soils [J]. Appl Environ Microbiol, 1998, 64:4333--4339.
[19]  LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006,442(7104):806--809.
[20]  中国科学院《中国自然地理》编辑委员会.中国自然地理地表水[M].北京:科学出版社,1981.108-111.
[21]  刘芳文 颜文 黄小平 施平.珠江口沉积物中重金属及其相态分布特征[J].热带海洋学报,2003,22(5):16-24.
[22]  杨广杏 张展霞 李耀初.珠江口石油污染及油品鉴定[J].交通环保,1997,18:10-13.
[23]  PIELOU E C. An Introduction to Mathematical Ecology [M]. New York: Wiley and Sons,1969:1-406.
[24]  BROWN M V, BOWMAN J P. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO)[J]. FEMS Microbial Ecol, 2001, 35:267--275.
[25]  TAKAI K, MOSER D P, DEFLAUN M, et al. Archaeal diversity in waters from deep South African gold mines[J]. Appl Environ Microbiol, 2001, 67(12): 5750--5760.
[26]  SHIMIZU S, AKIYAMA M, ISHIJMA Y, et al. Molecular characterization of microbial communities in fault--bordered aquifers in the Miocene formation of northernmost Japan[J]. Geobiology, 2006, 4:147--223.
[27]  YAN Bing, HONG Kui, YU Zi-niu. Archaeal communities in mangrove soil characterized by 16S rRNA gene clones [J]. The Journal of Microbiology, 2006, 44(5) : 566--571.
[28]  HEIJS S K, HAESE R R, VAN DER WIELEN, et al. Use of 16S rRNA gene based clone libraries to assess microbial Communities potentially involved in anaerobic methane oxidation in a mediterranean cold seep [J]. Microb Ecol, 2007, 53 (3): 384--398.
[29]  WEIDLER G W, DORNMAYR-PFAFFENHUEMER M, GERBL F W, et al. Communities of archaea and bacteria in a subsurface radioactive thermal spring in the austrian central alps, and evidence of ammonia-oxidizing crenarchaeota [J]. Appl Environ Microbiol, 2007, 73(1):259--270.
[30]  INAGAKI F, NUNOURA T, NAKAGAWA S, et al. Biogeographical distribution and diversity of microbes in methane hydrate--bearing deep marine sediments on the Pacific Ocean Margin [J]. Proc Natl Acad Sci USA, 2006, 103(8):2815--2820.
[31]  KASAI Y, TAKAHATA Y, HOAKI T, et al. Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil[J]. Environ Microbiol, 2005, 7(6):806--818.
[32]  DHILLON A, LEVER M, LLOYD K G, et al. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (merA) genes in hydrothermal sediments of the Guaymas Basin [J]. Appl Environ Microbiol, 2005, 71 (8) : 4592--4601.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133