全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非结构化网格下椭圆型缓坡方程的数值求解

, PP. 159-164

Keywords: 椭圆型缓坡方程,非结构化网格,有限容积法

Full-Text   Cite this paper   Add to My Lib

Abstract:

椭圆型缓坡方程是一种用线性波浪理论研究近岸波浪传播变形的有效波浪数学模型。非结构化网格下的有限容积法不仅对复杂边界的适应性好,还能保证迭代求解过程的守恒性。建立了非结构化网格下的椭圆型缓坡方程数值模型。在模型中采用非结构化网格下的有限容积法对椭圆型缓坡方程进行了数值离散,结合GPBiCG(m,n)算法求解离散方程。数值计算结果表明,该数值模型可有效地用于模拟近岸缓坡区域复杂边界下波浪的传播。

References

[1]  BERKHOFF J C W. Computation of combined refraction-diffraction[G]//Proceeding of the 13^th International Conference Coastal Engineering. New York,1972:471-490.
[2]  赵明 滕斌.椭圆型缓坡方程的一个有效的有限元解[J].海洋学报,:.
[3]  张洪生 丁平兴 赵海虹.一般曲线坐标系下波浪传播的数值模拟[J].海洋学报,:.
[4]  陶文栓.计算传热学的近代进展[M].北京:科学出版社,2001.
[5]  LIEN F S. A pressure-based unstructured grid method for all-speed flows[J]. Int J Numer Meth Fluids,2000,33(3) :355-374.
[6]  FUJINO S, GPBiCG(m,l) : a hybrid of BiCGSTAB and GPBiCG method for surface efficiency and robustness[J]. Appl Numer Math, 2002, 41:107-117.
[7]  MEMOS C D. Water waves diffracted by two breakwaters [J]. Journal of Hydraulic Research, 1980,18(4) :343-357.
[8]  TANG J, SHEN Y M, ZHENG Y H, et al. An efficient and flexile computational model for solving the mild slope equation[J]. Coastal Engineering, 2004,51 : 143-154.
[9]  ZHAO Y, ANASTASIOU K. Modeling of wave propagation in the nearshore region using the mild slop equation with GMRES-BASED iterative solvers[J]. Int J Numer Methods Fluids, 1996, 23:397-411.
[10]  KIRBY J, DALRYMPLE R A. Verification of a parabolic equation for propagation of weakly-nonlinear waves [J]. Coastal Engineering, 1984,8:219-232.
[11]  LIB. A generalized conjugate gradient model of the mild slope equation[J]. Coastal Engineering, 1994,23:215-225.
[12]  潘军宁 左其华 王登婷.港域波浪数学模型的改进与验证[J].海洋工程,2008,26(2):34-42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133