PETERSON B J, HOWARTH R W. Sulfur, carbon and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia[J]. Limnology and Oceanography, 1987, 32: 1195-1213.
HUANG H, ZHANG L Q. A study of the population dynamics of Spartina alterniflora at Jiuduansha shoals, Shanghai, China[J]. Ecological Engineering, 2007, 29:164-172.
[7]
BLANCHARD G F, GUARINI J M, DANG C, et al. Characterizing and quantifying photoinhibition in intertidal mierophytobenthos [J]. Journal of Phycology, 2004, 40:692-696.
[8]
BOSLEY K L, WAINRIGHT S C. Effects of preservatives and acidification on the stable isotope ratios (^15N:^14N, ^13C:^12C) of two species of marine animals[J]. Canadian Journal of Fishery Aquatic Science, 1999, 56:2181-2185.
[9]
MCCUTCHAN JR J H. , LEWIS JR W M, KENDALL C, et al. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, andsulfur[J]. OIKOS, 2003, 102:378-390.
[10]
BENSTEAD J P, MARCH J G, FRY B, et al. Testing IsoSource: stable isotope analysis of a trophical fishery with diverse organic matter sources[J]. Ecology, 2006, 87:326-333.
[11]
ROMAN M R. Utilization of detritus by the copepod, Acartia tonsa[J]. Limnology and Oceanography, 1984, 29:949-959.
[12]
STOECKER D K, CAPUZZO J M. Predation on protozoa: its importance to zooplankton[J]. Journal of Plankton Research, 1990, 12: 891-908.
[13]
WAINRIGHT S C, WEINSTEIN M P, ABLE K W, et al. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass Spartina alterniflora and the common reed Phragrnites australis to brackish marsh food webs[J]. Marine Ecology Progress Series, 2000, 200:77-91.
[14]
PENNINGS S C, CAREFOOT T H, SISKA E L, et al. Feeding preferences of a generalist salt marsh crab: relative importance of multipleplant traits[J]. Ecology, 1998, 79:1968-1979.
HEDGE P, KRIWOKEN L K. Evidence for the effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania[J]. Austrian Ecology, 2000, 25:150-159.
[17]
LEVIN L A, NEIRA C, GROSHOLZ E D. Invasive cordgrass modifies wetland trophic function[J]. Ecology, 2006, 87:419-432.
[18]
TEAL J M, HOWES B L. Salt marsh values: retrospection from the end of the century[M]// WEINSTEIN M P, KREEGER D A. Concepts and Controversies in Tidal Marsh Ecology. New York: Kluwer Academic Publishers, 2002: 9-19.
[19]
ODUM E P. A research challenge: evaluating the productivity of coastal and estuarine water // Proceedings of the 2nd Sea Grant congress. Kingston: University of Rhode Island, 1968, 63-64.
[20]
TURNER R E S, WOO W, JITTS H R. Estuarine influences on a continental shelf plankton community[J]. Science, 1979, 206:218-220.
[21]
CURRIN C A, NEWELL S Y, PAERL H W. The role of standing dead Spartina alterniflora and benthic microalgae in salt-marsh food webs: considerations based on multiple stable isotope analysis[J]. Marine Ecology Progress Series, 1995, 121: 99-116.
[22]
MELVILLE A J, CONNOLLY R M. Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ mieroalgae[J]. Marine Biology, 2005, 148:363-371.
BUNN S E, LONERAGAN N R, KEMPSTER M A. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes[J]. Limnology and Oceanography, 1995, 40:622-625.
[26]
HALL ASPLAND S A, HAM. A P, ROGERS T L. A new approach to the solution of the linear mixing model for a single isotope: application to the case of an opportunistic predator[J]. Oecologia, 2005, 143:143-147.
[27]
HOCKSTADT L A, ROJAS C P, ANTEZANA T. Stable isotope analysis reveals pelagic foraging by the Southern sea lion in central Chile[J]. Journal Experiment of Marine Biology and Ecology, 2007, 347:123-133.
[28]
吴莹 张再峰 等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋与湖沼,:.
[29]
BUSKEY E J, DUNTON K H, PARKER P L. Variations in stable carbon isotope ratio of the copepod Acartia tonsa during the onset of the Texas brown tide[J]. Estuaries, 1999, 22: 995-1003.
[30]
MILLER D C, GEIDER R J, MACINTYRE H L. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shal low water marine habitats. Ⅱ. Role in sediment stability and shallow water food webs[J]. Estuaries, 1996, 19:202-212.
[31]
SULLIVAN M J, MONCREIFF C A. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple sta ble isotope analyses[J]. Marine Ecology Progress Series, 1990, 62: 149-159.
[32]
STRIBLING J M, CORNWELL J C. Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and sulfur[J]. Estuaries, 1997, 20:77-85.
[33]
BENNER R, MACCUBBIN A E, HODSON R E. Preparation, characterization and microbial degradation of specifically radiolabeled ^14C lignoeellulose from marine and freshwater macrophytes[J]. Application of Environment Microbiology, 1984, 47:381-389.
[34]
BOSCHKER H T S, DE BROUWER J F C, CAPPENBERG T E. The contribution of macrophyto-derived organic matter to microbial biomass in salt marsh sediments: Stable carbon isotope analysis of microbial biomarkers[J]. Limnology and Oceanography, 1999, 44: 309-319.
SIMENSTAD C A, THOM R M. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific Northwest Estuaries [J].Hortus Northwest, 1995, 6:9-12, 38-40.
[38]
CHEN Z Y, LI B, ZHONG Y, CHEN J K. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences[J]. Hydrobiologia, 2004, 528: 99-106.
[39]
YANG S L, ZHANG J, ZHU J, et al. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response [J]. Journal of Geophysical Research, 2005, 110: F03006, doiz10.1029/2004JF000271.
[40]
YANG S L, LI M, DAI S B, et al. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland man agement[J]. Geophysical Research Letter, 2006, 33: L06408, doi: 10. 1029/2005GL025507.