全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

波-波间非线性能量传输的一种新计算方法

, PP. 35-40

Keywords: 波-波间非线性,精确计算,海浪模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

从最基本的Boltzmann六重积分出发,在借鉴其他作者研究经验的基础上,建立起一种新的精确计算模型。该模型不但获得了与前人相一致的结果,还能够清晰的表现出每一个参与相互作用的共振架构对能量传输的贡献大小,并且直观的反映出构成这些架构的共振波数的详细情况。该研究工作为深入研究不同海浪谱中非线性能量传输特征以及其近似计算方法改进提供了基础。

References

[1]  HASSELMANN K. On the non-linear energy transfer in a gravity-wave spectrum: Part 1. General theory[J]. J Fluid Mech, 1962(12): 481-500.
[2]  HASSELMANN K. On the non-linear energy transfer in a gravity-wave spectrum: Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum[J]. J Fluid Mech,1963(15): 385-398.
[3]  LONGUET-HIGGINS M S. On the nonlinear transfer of energy in the peak of a gravity-wave spectrum:A simplified model[J]. Proc Roy Soc London, 1976, A347: 311-328.
[4]  MASUDA A. Nonlinear energy transfer between wind waves[J]. J Phys Oceanogr, 1980, 10: 2082-2093.
[5]  RESIO D T, PERRIE W. A numerical study of nonlinear energy fluxes due to wave-wave interactions: Part 1. Methodology and basic results[J]. J Fluid Mech,1991,223: 609-629.
[6]  KOMATZU K, MASUDA A. A new scheme of nonlinear energy transfer among wind waves: RIAM method-Algorithm and performance[J]. J Oceanogr,1996,52: 509-537.
[7]  LIN R Q, PERRIE W. Wave-wave interactions in finite depth water[J]. J Geophys Res,1999, 104: 11 193-11 213.
[8]  VAN VLEDDER G Ph. Improved algorithms for computing the non-linear quadruplet wave-wave interactions in deep and shallow water . The ECMWF workshop on Ocean Wave Forecasting, European Centre for Medium-Range Weather Forecasts Reading, England, United Kingdom, 2001.
[9]  HASSELMANN S, HASSELMANN K. Computations and parameterizations of the nonlinear energy transfer in gravity-wave spectrum: Part Ⅰ. A new method for efficient computations of the exact nonlinear transfer integral[J]. J Phys Oceanogr, 1985, 15: 1369-1377.
[10]  PHILLIPS O M. On the dynamics of unsteady gravity waves of finite amplitude: Part 1.The elementary interactions[J]. J Fluid Mech, 1960(9): 193-217.
[11]  HASSELMANN K. On the non-linear energy transfer in a gravity-wave spectrum: Part 2. Conservation theorems; wave-particle analogy; irreversibility[J]. J Fluid Mech, 1963(15): 273-281.
[12]  SELL W, HASSELMANN K. Computations of nonlinear energy transfer for JONSWAP and empirical wind-wave spectra[J]. Rep Inst Geophys Univ Hamburg, 1972: 1-6.
[13]  FOX M J. On the nonlinear transfer of energy in the peak of a gravity-wave spectrum Ⅱ[J]. Proc Roy Soc London, 1976,A348: 467-483.
[14]  HASSELMANN S, HASSELMANN K. A symmetrical method of computing the nonlinear transfer in a gravity wave spectrum[J]. Hamburger Geophys, Einzelschr, 1981,A 52: 163.
[15]  HASSELMANN S, HASSELMANN K. Computations and parameterizetions of the nonlinear energy transfer in gravity-wave spectrum: Part Ⅱ. Parameterizations of the nonlinear energy transfer for application in wave models[J]. J Phys Oceanogr, 1985, 15: 1378-1391.
[16]  JENKINS A, PILLIPS O M. A simple formula for nonlinear wave-wave interaction[J]. Intern J of Offshore and Polar Engineering,2001,11: 81-86.
[17]  VAN VLEDDER G Ph, HERBERS T H C, JENSEN R E, et al. Modelling of non-linear quadruplet wave-wave interactions in operational wave models . Proc. 27th Int. Conf. on Coastal Engineering, Sydney, Australia,2000.
[18]  HERTERICH K, HASSELMANN K.A similarity relation for the nonlinear energy transfer in a finite-depth gravity-wave spectrum[J]. J Fluid Mech, 1980, 97: 215-224.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133