全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内波吸引子的数值模拟

, PP. 25-34

Keywords: 内波吸引子,MITgcm,非静压,内波特征线,均匀层结

Full-Text   Cite this paper   Add to My Lib

Abstract:

密度稳定层结的流体中产生的内波沿着由内波固有频率、流体浮力频率等因素所确定的特征线(或内波射线)传播。边界上的反射不改变内波的频率,从而也不改变反射后的内波特征线与重力方向所成的夹角。侧边界倾斜的封闭容器内,内波能量沿特征线传播的过程中经侧壁、表面和底面的反射可能会集中在一个封闭的轨道上,形成内波吸引子。该现象已经得到水槽试验、线性理论和数值试验的验证。本文利用非线性非静压的环流模式MITgcm,模拟了二维封闭区域中(1,1)-吸引子和(2,1)-吸引子的形成过程,并讨论初值条件对它们的影响。稳定的(1,1)-吸引子其极限环两侧流速出现很强的剪切流。当减小地形的坡度时,由于线性因素的增加,吸引子的结构不变,但吸引子厚度在相空间中的收缩速度加快。对于(2,1)-吸引子,由于轨道所成的两个环中间的节点耗散了部分能量,吸引子的收敛速度较慢。节点处,流体速度始终为0,但存在强烈混合,流体浮力频率呈现振幅较大的周期变化。

References

[1]  SWART A, MANDERS A, HARLANDER U, et al. Experimental observation of strong mixing due to internal wave focusing over sloping terrain[J]. Dynamics of Atmospheres and Oceans,2010,50(1):16-34.
[2]  MANDERS A M M, MAAS L R M. Observations of inertial waves in a rectangular basin with one sloping boundary[J]. Journal of Fluid Mechanics,2003,493:59-88.
[3]  OGILVIE G I. Wave attractors and the asymptotic dissipation rate of tidal disturbances[J]. Journal of Fluid Mechanics,2005,543:19-63.
[4]  HAZEWINKEL J, BREEVOORT P V, DALZIEL S B, et al. Observations on the wavenumber spectrum and evolution of an internal wave attractor[J]. Journal of Fluid Mechanics,2008,598:373-382.
[5]  GRISOUARD N, STAQUET C, PAIRAUD I. Numerical simulation of a two-dimensional internal wave attractor[J]. Journal of Fluid Mechanics,2008,614:1-14.
[6]  MAAS L R M. Wave attractors: linear yet nonlinear[J]. International Journal of Bifurcation and Chaos,2005,15(9):2757-2782.
[7]  MAAS L R M. Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids[J]. Journal of Fluid Mechanics,2001,437:13-28.
[8]  MANDERS A M M, MAAS L R M, GERKEMA T. Observations of internal tides in the Mozambique Channel[J]. Journal of Geophysical Research,2004,109:C12034-C12042.
[9]  ECHEVERRI P, YOKOSSI T, BALMFORTH N J, et al. Internal tide attractors between double ridges[J]. Submitted to Journal of Fluid Mechanics,http://web.mit.edu/endlab/publications/2009-Echeverri-InternalTideAttractors. pdf.
[10]  TANG W, PEACOCK T. Lagrangian coherent structures and internal wave attractors[J]. Chaos,2010,20(017508):9.
[11]  MAAS L R M, LAM F-P A. Geometric focusing of internal waves[J]. Journal of Fluid Mechanics,1995,300:1-41.
[12]  MAAS L R M, BENIELLI D, SOMMERIA J, et al. Observation of an internal wave attractor in a confined stable stratified fluid[J]. Nature,1997,388:557-561.
[13]  DINTRANS B, RIEUTORD M, VALDETTARO L. Gravito-inertial waves in a rotating stratified sphere or spherical shell[J]. Journal of Fluid Mechanics,1999,398:271-297.
[14]  MANDERS A M M, DUISTERMAAT J J, MAAS L R M. Wave attractors in a smooth convex enclosed geometry[J]. Physica D: Nonlinear Phenomena,2003,186(3-4):109-132.
[15]  LAM F-P A, MAAS L R M. Internal wave focusing revisited; a reanalysis and new theoretical links[J]. Fluid Dynamics Research,2008,40:95-122.
[16]  HAZEWINKEL J, GRISOUARD N, DALZIEL S B. Comparison of laboratory and numerically observed scalar fields of an internal wave attractor.2010: http://homepages.cwi.nl/~hazewink/papers/HGD.pdf.
[17]  MAAS L R M. Exact analytic self-similar solution of a wave attractor field[J]. Physica D: Nonlinear Phenomena, 2009,238(5):502-505.
[18]  RIEUTORD M, GEORGEOT B, VALDETTARO L. Inertial waves in a rotating spherical shell:attractors and asymptotic spectrum[J]. Journal of Fluid Mechanics,2001,435:103-144.
[19]  GO\'MEZ-GIRALDO A S, IMBERGER J R, ANTENUCCI J P. Spatial structure of the dominant basin-scale internal waves in Lake Kinneret[J]. Limnology and Oceanography,2006,51(1):229-246.
[20]  STAQUET C, SOMMERIA J. Internal Gravity Waves: from instabilities to turbulence[J]. Annual Review of Fluid Mechanics,2002,34:559-594.
[21]  PEACOCK T, TABAEI A. Visualization of nonlinear effects in reflecting internal wave beams[J]. Physics of Fluids, 2005,17:061702-1-4,doi:10.1063/1.1932309.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133