JOHANNES R E. The ecological significance of the submarine discharge of groundwater[J]. Marine Ecology-Progress Series, 1980, 3:365—373.
[2]
BURNETT W C, TANIGUCHI M, OBERDORFER J A. Measurement and significance of the direct discharge of groundwater into the coastal zone[J]. Journal of Sea Research, 2001, 46:109—116.
[3]
TANIGUCHI M, BURNETT W C, CABLE J E, et al. Investigation of submarine groundwater discharge[J]. Hydrological Process, 2002, 16:2115—2129.
[4]
BOKUNIEWICZ H. Groundwater seepage into Great South Bay, New York[J]. Estuarine and Coastal Marine Science, 1980, 10:437—444.
[5]
VALIELA I, COSTA J, FOREMAN K, et al. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters[J]. Biogeochemistry, 1990, 10: 177—197.
TANIGUCHIL M, BURNETT W C, SMITH C F, et al. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the northeastern Gulf of Mexico[J]. Biogeochemistry, 2003, 66: 35—53.
[8]
TANIGUCHI M, TURNER J V, SMITH A J. Valuations of groundwater discharge rates from subsurface temperature in Cockburn Sound, Western Australia[J]. Biogeochemistry, 2003, 66:111—124.
[9]
WIEBE R, GADDY V L. The solubility of carbon dioxide in water at various temperatures from 12 to 40℃ and at pressures to 500 atm[J]. Journal of the American Chemical Society, 1940, 62:815—817.
[10]
DEUTSCH W J. Groundwater Geochemistry: Fundamentals and Applications to Contamination[M]. Washington: CRC Press, 1997: 27—33.
[11]
张正斌. 海洋化学[M]. 青岛:中国海洋出版社, 2004: 71—124.
[12]
CAI W J, WANG Y C, KREST J, et al. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 631—637.
[13]
MOORE W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 180:612—614.
[14]
LAMBERT M J, BUMETT W C. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements[J]. Biogeochemistry, 2003, 66:55—73.
[15]
GIBLIN A E, GAINES A G. Nitrogen inputs to a marine embayment: the importance of groundwater[J]. Biogeochemistry, 1990, 10:309—328.
[16]
LAROCHE J, NUZZI R, WATERS R, et al. Brown tide blooms in Long Islands coastal waters linked to inter-annual variability in groundwater flow[J]. Global Change Biology, 1997, 3: 397—410.
[17]
PAERL H W. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as "new" nitrogen and other nutrient sources[J]. Limnology and Oceanography, 1997,42:1154—1165.
KARPEN V, THOMSEN L, SUESS E. A new \'schlieren’ technique application for fluid flow visualization at cold seep sites[J]. Marine Geology, 2004, 204:145—159.
[20]
DUAN Zhen-hao, SUN Rui. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193:257—271.
[21]
REDFIELD A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46:205-221.
[22]
LANG W, BLCK T M, ZANDER R. Solubility of NH3 and apparent pK of NH+4 in human plasma, isotonic salt solutions and water at 37℃[J]. Clinica Chimica Acta, 1998, 273 :43-58.
[23]
STUMM W, MORGAN J J. Aquatic Chemistry: an Introduction Emphasizing Chemical Equilibria in Natural Waters[M]. New York: Wiley-Interscience, 1981: 309—364.
[24]
SLOMP C P, CAPPLLEN P V. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact[J]. Journal of Hydrology, 2004, 295: 64—86.
[25]
WENG Huan-xin, PRESLEY B J, ARMSTRONG D. Distribution of sedimentary phosphorus in Gulf of Mexico estuaries[J]. Marine Environmental Research, 1994, 37(4):375—392.