|
红外与毫米波学报 2015
Dark current suppression in HOT LWIR HgCdTe heterostructures operating in non-equilibrium modeKeywords: HOT, HgCdTe, non-equilibrium conditions, barrier infrared detectors Abstract: Typically, infrared detectors require cryogenic cooling to limit dark current which is directly dependent on Auger generation-recombination mechanism and highly influential in HgCdTe-narrow band gap material. The Auger suppressed architectures have an advantage over conventional detectors allowing operation at elevated temperatures >200 K. Architecture with combination of exclusion and extraction heterojunctions has been proposed to lower Auger contribution. The paper presents a new long-wave (≈ 10 μm) infrared HgCdTe architecture with graded gap/doping interfaces and extra barrier located in exclusion heterojunction to suppress dark current for high operating temperature conditions. Proper barrier implementation reduces dark current by more than 20 A/cm2 for room temperature operation
|