1Sevilla-Lara L, Learned-Miller E. Distribution Fields for Tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2012, 1910-1917.
[2]
2Oron S, Bar-Hillel A, Levi D, et al. Locally orderless tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2012, 1940-1947.
[3]
3Wang S, Lu H, Yang F, et al. Superpixel tracking[C]. IEEE International Conference on Computer Vision(ICCV), 2011, 1323-1330.
[4]
4Lin Zaiping, Zhou Yiyu, An Wei. Improved multitarget track-before-detect using probability hypothesis density filter[J]. J. Infrared Millim. Waves(林再平, 周一宇, 安玮.改进的概率假设密度加波多目标检测前跟踪算法, 红外与毫米波学报)2012, 31(5): 475-480.
[5]
5Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on, 2006, 52(4): 1289-1306.
[6]
6Hanxi L, Chunhua S, Qinfeng S. Real-time visual tracking using compressive sensing[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2011, 1305-1312.
[7]
7Zhang K, Zhang L, Yang M H. Real-time compressive tracking[C]. in Computer Vision-ECCV, 2012, Springer, 864-877.
[8]
8Kong Jun, Tang Xinyi, Jiang Min. Object location technique for moving target based on multi-sclae feature extraction[J]. J. Infrared Millim. Waves(孔军, 汤心溢, 蒋敏, 基于多尺度特征提取的运动目标定位研究, 红外与毫米波学报)2011, 30(1): 21-26.
[9]
9Lindeberg T. Scale-space theory: A framework for handling image structures at multiple scales[C]. in Proc. CERN School of Computing, 1996, 27-38.