全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种近似用于高发射率城市地表热红外等效发射率的方向性变异核驱动模型及其不确定性分析

Keywords: 遥感 城市 热红外发射率 方向性 核驱动模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

地表热红外发射率(8~14μm)的方向性变异为遥感地表温度的反演及应用引入了不确定性, 这种问题在城市地表显得尤为突出.发展了一种近似用于高发射率城市地表热红外等效发射率的方向性变异(Urban Surface Emissivity Anisotropy, USEA)核驱动模型, 并分析了具体应用时的不确定性, 其中USEA用非垂直观测的发射率与垂直观测时的发射率之比定量表示.模型有两个基本假设: (1) 白天, USEA具有热点效应, 热点位置与太阳位置接近;(2) 夜晚, USEA无明显热点效应, 且主要与观测天顶角相关.该核驱动模型由各向同性核、多次散射核、以及温差核组成, 其中各向同性核为常数1, 多次散射核描述了USEA与观测天顶角的关系, 温差核描述了USEA的热点效应.基于计算机模拟数据的模型评价结果表明, 核驱动模型可以表达USEA的时空变化, 但城市地表热惯量会导致模型的适用性降低.该核驱动模型在MODIS等传感器的方向性比辐射率数据上, 具有一定的应用潜力

References

[1]  1ZHOU J, LI J, ZHANG L, et al. Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere [J]. International Journal of Remote Sensing, 2012, 33(8): 2582-2602.
[2]  2SUN Hao, CHEN Yun-Hao, SUN Hong-Quan. Comparisons and classification system of typical remote sensing indexes for agricultural drought [J]. Transactions of the Chinese Society of Agricultrual Engineering (孙灏,陈云浩,孙洪泉.典型农业干旱遥感监测指数的比较及分类体系.农业工程学报),2012,28(14): 147-152.
[3]  3ZHOU J, CHEN Y, WANG J, et al. Maximum nighttime urban heat island (UHI) intensity simulation by integrating remotely sensed data and meteorological observations [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(1): 138-146.
[4]  4ZHOU J, CHEN Y, ZHANG X, et al. Modeling the diurnal variations of urban heat island with multi-source satellite data [J]. International Journal of Remote Sensing, 2013,Accepted.
[5]  5LI Z-L, TANG B-H, WU H, et al. Satellite-derived land surface temperature: Current status and perspectives [J]. Remote Sensing of Environment, 2013,131: 14-37.
[6]  6ZHAN Wenfeng, ZHOU Ji, MA Wei. Computer simulation of land surface thermal anisotropy based onrealistic structure model: A review [J]. Advances in Earth Science (占文凤, 周纪, 马伟. 基于真实结构的地表热辐射方向性计算机模拟研究进展.地球科学进展),2009,24(12): 1309-1318.
[7]  7SOBRINO J A, JIMNEZ-MUOZ J C, Verhoef W. Canopy directional emissivity: Comparison between models [J]. Remote Sensing of Environment,2005,99(3): 304-314.
[8]  8PENG Jing-Jing, LIU Qiang, LIU Qin-Huo, et al. Kernel-driven model fitting of multi-angle thermal infrared brightness temperature and its application [J]. J. Infrared Millim. Waves (彭菁菁,刘强,柳钦火,等.多角度热红外亮温值的模型拟合与应用.红外与毫米波学报),2011,30(4): 361-367.
[9]  9ZHOU Ji, CHEN Yun-Hao, LI Jing, et al. Progress in Thermal anisotropy of urban area: A review [J]. Advances in Earth Science (周纪,陈云浩,李京,等.城市区域热辐射方向性研究进展.地球科学进展),2009,24(5): 497-506.
[10]  10LAGOUARDE J-P, HNON A, KURZ B, et al. Modelling daytime thermal infrared directional anisotropy over Toulouse city centre [J]. Remote Sensing of Environment, 2010,114(1): 87-105.
[11]  11LAGOUARDE J-P, HNON A, IRVINE M, et al. Experimental characterization and modelling of the nighttime directional anisotropy of thermal infrared measurements over an urban area: Case study of Toulouse (France) [J]. Remote Sensing of Environment,2012,117(15): 19-33.
[12]  12MA Wei, CHEN Yun-Hao, ZHAN Wen-Feng, et al. Thermal anisotropy model for simulated three dimensional urban targets [J]. Journal of Remote Sensing(马伟,陈云浩,占文凤,等.城市模拟目标的3维热辐射方向性模型.遥感学报),2013,17(1): 62-76.
[13]  13YU Tao, TIAN Qi-Yan, GU Xing-Fa, et al. Modelling directional brightness temperature over a simple typical structure of urban areas [J]. Journal of Remote Sensing(余涛,田启燕,顾行发,等.城市简单目标方向亮温研究.遥感学报),2006,10(5): 661-670.
[14]  14VOOGT J A. Assessment of an Urban Sensor View Model for thermal anisotropy [J]. Remote Sensing of Environment,2008,112(2): 482-495.
[15]  15SOUX A, VOOGT J A, OKE T R. A model to calculate what a remote sensorseeof an urban surface[J].Boundary-Layer Meteorology,2004,111(2): 109-132.
[16]  16FONTANILLES G, BRIOTTET X, FABRE S, et al. Thermal infrared radiance simulation with aggregation modeling (TITAN): an infrared radiative transfer model for heterogeneous three-dimensional surface-application over urban areas [J]. Applied Optics,2008,47(31): 5799-5810.
[17]  17LI X, WANG J. The definition of effective emissivity of land surface at the scale of remote sensing pixels [J]. Chinese Science Bulletin,1999,44(23): 2154-2158.
[18]  18REN H, YAN G, CHEN L, et al. Angular effect of MODIS emissivity products and its application to the split-window algorithm[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(4): 498-507.
[19]  19LAGOUARDE J-P, MOREAU P, IRVINE M, et al. Airborne experimental measurements of the angular variations in surface temperature over urban areas: case study of Marseille (France) [J]. Remote Sensing of Environment,2004,93(4): 443-462.
[20]  20LAGOUARDE J-P, IRVINE M. Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: first results[J]. Meteorology and Atmospheric Physics, 2008,102(3-4): 173-185.
[21]  21VINNIKOV K Y, Yu Y, Goldberg M D, et al. Angular anisotropy of satellite observations of land surface temperature[J]. Geophysical Research Letters, 2012,39: L23802.
[22]  22SOBRINO J A, OLTRA-CARRI R, JIMNEZ-MUOZ J C, et al. Emissivity mapping over urban areas using a classification-based approach: Application to the Dual-use European Security IR Experiment (DESIREX) [J]. International Journal of Applied Earth Observation and Geoinformation,2012,18: 141-147.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133