. T. H. Jamieson, Thermal effects in optical systems, Opt. Eng. 20, 156 (1981).
[2]
. S. Mezouari and A. R. Harvey, Wavefront coding for aberration compensation in thermal imaging systems, Proc. SPIE 4442, 34 (2001).
[3]
. G. Muyo and A. R. Harvey, Wavefront Coding for Athermalization of Infrared Imaging Systems, Proc. SPIE 5612, 227 (2004).
[4]
. E. R. Dowski and W. T. Cathey, Extended depth of field through wave-front coding, Appl. Opt. 34, 1859 (1995).
[5]
. W. T. Cathey and E. R. Dowski, New paradigm for imaging systems, Appl. Opt. 41, 6080 (2002).
[6]
. E. Dowski and K. Kubala, Design and Optimization of Computational Imaging Systems, Proc. SPIE 5299, 155 (2004).
[7]
. S. S. Sherif, W. T. Cathey, and E. R. Dowski, Phase plate to extend the depth of field of incoherent hybrid imaging systems, Appl. Opt. 43, 2709 (2004).
[8]
. Q. Yang, L. Liu and J. Sun, Optimized phase pupil masks for extended depth of ?eld, Opt. Commun. 272, 56 (2007).
[9]
. H. Zhao, and Y. Li, Optimized sinusoidal phase mask to extend the depth of ?eld of an incoherent imaging system, Opt. Lett. 35, 267 (2010).
[10]
. J. M. Bacchus and T. Angnieux, Using new optical materials and DOE in low-cost lenses for uncooled IR cameras, Proc. SPIE 5249, 425 (2004).
[11]
. H. Zhao and Y. C. Li, Performance of an improved logarithmic phase mask with optimized parameters in a wavefront-coding system, Appl. Opt. 49, 229 (2010).
[12]
. H. Zhao, Q. Li, and H. Feng, Improved logarithmic phase mask to extend the depth of field of an incoherent imaging system, Opt. Lett. 33, 1171 (2008).