全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非下采样Shearlet和方向权值邻域窗的非局部均值SAR图像相干斑抑制

Keywords: 非局部均值,非下采样Shearlet特征描述子,方向邻域窗,SAR图像降斑

Full-Text   Cite this paper   Add to My Lib

Abstract:

非局部均值算法将传统的图像去噪算法由局部计算模型推广到非局部计算模型,取得了良好的效果.但对于合成孔径雷达图像,使用观测值和各向同性邻域窗来度量相似性,缺乏鲁棒性和方向性,不利于捕获图像边缘结构信息.提出了基于非下采样Shearlet特征描述子和方向权值邻域窗的非局部均值算法.实验表明,该算法不但有效地去除了相干斑,而且很好地保持了图像的几何结构信息,为后期SAR图像的理解与解译奠定了良好的基础.

References

[1]  Maitre H. 合成孔径雷达图像处理[M]. 孙洪等译. 北京:电子工业出版社, 2005
[2]  焦李成,张向荣,侯彪,王爽,刘芳,智能SAR图像处理与解译[M],北京:科学出版社,2009
[3]  LEE J S.Digital image smoothing and the sigma filter[J].Computer Vision,Graphics and Image Processing,1983,24:255—269.
[4]  FROST V S,STILES J A.A model for radar images an d its application to adaptive digital filtering of multiplicative noise[J].IEEE Trans PAMI,1982,4(2):157—165
[5]  CRIMMINS T R.Geometric filter for speckle reduction[J].Applied Optics,1985,24(10):1438—1443.
[6]  KUAN D T,SAWCHUK A A,Strand T C,Chavel P.Adaptive restauration ofimages with speckle[J].IEEE Trans ASSP,1987,35(3),pp:373—383.
[7]  DONOHO D. De-noising by Soft-thresholding[J]. IEEE Trans IT, 1995, 41. pp. 613~627.
[8]  胡海平 莫玉龙,基于贝叶斯估计的小波阈值图像降噪方法[J],红外与毫米波学报,2002,21(1):74-76
[9]  凤宏晓 侯彪 王爽 焦李成,基于自适应窗和形状自适应小波变换的SAR图像相干斑抑制[J].红外与毫米波学报,2009,28(3):212-217,223
[10]  CROUSE M.S., NOWAK R.D.,and BARANIUK R.G., Wavevlet-based Statistieal Signal Poeessing Using Hidden Makrov Models[J]. IEEE Trans. SP,1998, 46:886~902.
[11]  沙宇恒,丛琳,孙强,焦李成基于Contourlet域HMT模型的SAR图像相干斑抑制[J].红外与毫米波学报,2009,28(1):66-71
[12]  BUADES A., COLL B.., and MOREL J., A non local algorithm for image denoising[C], Int. Conf. Computer Vision and Pattern Recognition (CVPR), 2005, 2: 60~65
[13]  KATKOVNIK V, FOI Ro, EGIAZARIAN K and ASTOLA J, From Local Kernel to Nonlocal Multiple-Model Image Denoising[J], Computer Vision,86(1): 1-32
[14]  LABATE D., LIM W.Q., KUTYNIOK G., and WEISS G., Sparse Multidimensional Representation using Shearlets[C], Wavlets XI (San Diego, CA, 2005) SPIE Proc.,2005:.254~262.
[15]  EASLEY G. R., LABATE D., LIM W.Q, Sparse Directional Image Representations using the Discrete Shearlet Transform[C], in Appl. Comput. Harmon. Anal. 2008.
[16]  GUO K. and LABATE D, Optimally Sparse Multidimensional Representation using Shearlets[J] , SIAM J. Math. Anal., 2007, 9: 298~318.
[17]  KUTYNIOK G. and SAUER T., From Wavelets to Shearlets and Back Again[M], in Approximation Theory XII ,San Antonio:TX, 2007
[18]  PEYRE G., Image Processing with Non-local Spectral Bases[J], SIAM MultiscaleModel. and Simul., 2008. 7(2):703~730.
[19]  COUPE P,HELLIER P, KERVRANN C and BARILLOT C, Nonlocal Means-Based Speckle Filtering for Ultrasound Images[J], IEEE Trans IP, 2009, 18(10): 2221-2229
[20]  COUPE P,HELLIER P, KERVRANN C and BARILLOT C, Bayesian non local means-based speckle filtering[C], 5th IEEE International Symposium on Biomedical Imaging, 2008,1291-1294
[21]  LOPES A, TOUZI R and NEZRY E. Adaptive Speckle Filters and Scene Heterogeneity[J]. IEEE Trans. Geosci. Remote Sens., 1990. 28(6):992-1000.
[22]  LOPES A, NEZRY E and TOUZI R. et al. Maximum a Posteriori Speckle Filtering and First Order Texture Models in SAR images[C]. In Proc. IGARSS, 1990:2409-2412
[23]  王晓军,孙洪,管鲍. SAR 图像相干斑抑制滤波性能评价[J].系统工程与电子技术,2004,26,(9):1165-1171,1183.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133