全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种融合时域和空域信息的运动目标分割新方法

Keywords: 运动目标分割时域信息空域信息信息融合区域捆绑HOS测试视频序列目标识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种融合时域和空域信息的方法,用于从视频序列中分割出运动物体。该方法是在分割过程中通过区域捆绑逐步融合时域和空域信息,而不是在时域分割结束之后再融合空域信息。分布式地表达分割物体并刻画其特征是区域捆绑的主要特征。本文的方法首先通过早期分割得到许多小区域,然后将这些小区域捆绑成一些捆绑核,再将剩下的区域通过强或弱的规则捆绑到相邻的捆绑核,从而实现目标区域的分割。实验结果显示了该方法的良好性能。

References

[1]  Kim M, Choi J G, Lee M H, et al.Description of Core Experiments N2. Doc. ISO/IEC JTC1/SC29/WG11, San Jose, 1998
[2]  Zucker S W. Region growing: Childhood and adolescence, Comput. Graph. ImageProcess, 1976, 5(2): 382-399
[3]  Horowitz S L, Pavlidis T. Picture segmentation by a directed split-and-mergeprocedure. Proceeding of 2nd Int. Joint Conference on Pattern Recognition, 1974, 424-433
[4]  Horowitz S L, Pavlidis T. Picture segmentation by a tree traversal algorithm. J.Assoc. Comput. Mach., 1976, 23(2): 368-388
[5]  Chen S, Lin W, Chen C. Split-and-merge image segmentation based on localizedfeature analysis and statistical tests. CVGIP: Graph Models Image Process, 1991, 53:457-475
[6]  Besl P, Jain R. Segmentation through variable-order surface fitting. IEEE Trans.Pattern Analysis and Machine Intelligence, 1988, 10(1): 167-192
[7]  Beveridge R. Segmenting images using localized histogram and region merging.CVGIP\'89, 1989, 2(2): 311-347
[8]  Hairs K. Hybrid image segmentation using watersheds and fast region merging, IEEETrans. Image Processing, 1998, 7(11): 1684-1699
[9]  Adams R, Bishof L. Seeded region growing, IEEE Trans. Pattern Analysis and MachineIntelligence, 1994, 16(4): 641-647
[10]  Pavlids T, Liow Y T. Integration region growing and edge detection. IEEE Trans.Pattern Analysis and Machine Intelligence, 1990, 12(1): 225-233
[11]  Kwok S H, Constantinides A G. A fast recursive shortest spanning tree for imagesegmentation and edge detection. IEEE Trans. Image Processing, 1997, 6(2): 328-332
[12]  Morris O J, Lee M J, Constantinides A G. Graph theory for image analysis: Anapproach based on the shortest spanning tree. Proc. Inst. Elect. Eng., 1986, 133(1):146-152
[13]  Salembier P, Pardas M. Hierarchical morphological segmentation for image sequencecoding. IEEE Trans. Image Processing, 1994, 3(4): 639-651
[14]  Neri A, Colonnese S, Russo G, et al. Automatic moving object and backgroundseparation. Signal Processing, 1998, 66(2): 219-232
[15]  Neri A, Colonnese S, Russo G. Automatic moving objects and background segmentationby means of Higher Order Statistics. IS&T Electronic Imaging\'97, SPIE: VisualCommunication and Image Processing, S. Jose, 1997, 8-14

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133