全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

苯、吡啶及吡嗪分子的超拉曼和表面增强超拉曼光谱

Keywords: 苯吡啶吡嗪超拉曼散射表面增强超拉曼散射分子振动光谱从头算

Full-Text   Cite this paper   Add to My Lib

Abstract:

用量子化学从头算法计算了苯、吡啶及吡嗪分子的超粒曼和表面增强的超拉曼光谱,并比较了理论计算与实验测量的结果,用Gaussian98中的密度泛函的方法计算分子的偶极矩、极化率和超极化率以及偶极矩、极化率的导数,而超极化率的导数则有限差分的方法来计算,为了检验有限差分法的准确性,用该方法计算了上述分子的红外和拉曼光谱,其结果与Gaussian98的计算结果高度一致,建立了基于有限差分法计算分子红外,拉曼,表面增强拉曼。超拉曼和表面增强超拉曼的光谱强度的方法,并编写了计算程序。

References

[1]  Terhune R W, Maker P D, Savage C M. Measurement of nonlinear light scattering.Phy.Rev.Lett., 1965,14: 681
[2]  Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys., 1985, 57: 783
[3]  Murphy D V, Von Raben K U, Chang R K, et al. Surface-enhanced hyper-Raman scattering from SO2-3 adsorbed on Ag powder. Chem. Phys. Lett., 1982, 85: 43
[4]  Baranov A V, Bobovich Ya S, Petrov V K. Resonance inelastic three-photon scattering: Physical model and experimental results. Sov. Phys. JETP (Eng. Transl.), 1985, 61: 435
[5]  Golab J T, Sprague J R, Carron K T, et al. A surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: Experiment and theory. J. Chem. Phys., 1988, 88: 7942
[6]  Polavarapu P L. Ab initio vibrational and Raman and Raman optically spectra. J. Phys. Chem., 1990, 94: 8106
[7]  Cyvin S J, Rauch J E, Decius J C. Theory of hyper-Raman effects (nonlinear inelastic light scattering): Selection rules and depolarisation ratios for the second-order polarizability. J. Chem. Phys., 1965,43:4083
[8]  Acker W P, Leach D H, Chang R K. Stokes and anti-Stokes hyper-Raman scattering from benzene, deuterated benzene, and carbon tetrachloride. Chem. Phys. Lett., 1989, 155: 491
[9]  Chang R K, Furtak T E, eds. Surface-Enhance Raman Scattering. New York: Plenum, 1982
[10]  Ziegler L D. Hyper-Paman Spectroscopy. J. Raman Spectroscopy, 1990, 21: 769
[11]  Nie S, Lipscomb L A, Yu N T. Surface-enhanced hyper-Raman spectroscopy. Appl. Sepctrosc. Rev., 1991, 26: 203
[12]  Califano S. Vibrational States.London: Wiley, 1976
[13]  Long D A. Raman Spectroscopy. London: McGraw-Hill, 1977
[14]  Komornicki A, Mclver Jr J W. An efficient ab initio method for computing infrared and Raman intensities: Application to ethylene. J. Chem. Phys., 1979, 70: 2014
[15]  Frisch M J, Yamaguchi Y, Gaw F J, et al. Analytic Raman intensities from molecular electronic wave functions. J. Chem. Phys., 1986, 84: 531
[16]  Levine I N. Quantum Chemistry. Fifth Edition, London: Prentice-Hall, 2000
[17]  Kedziora G S, Schatz C G. Calculating dipole and quadrupole polarizabilities relevant to surface enhanced Raman spectroscopy. Spectrochimica Acta Part A, 1999, 55: 625
[18]  Yang W H, Schatz G C. Ab initio and semiempirical molecular orbital studies of surface enhanced and bulk hyper-Raman scattering from pyridine. J. Chem. Phys., 1992, 97: 3831
[19]  Yang W H, Hulteen J, Schatz G C, et al. A suface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis (4-pyridyl) ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignment: Experiment and theory. J.Chem. Phys., 1996, 104: 4313
[20]  Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98 A.9. Pittsburgh: Gaussian Inc., 1998
[21]  Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev., 1988, A38: 3098
[22]  Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., 1988, B37: 785
[23]  Neddersen J P, Mounter S A, Bostick J M, et al. Nonresonant hyper Raman and hyper-Rayleigh Scattering in benzene and pyridine. J.Chem.Phys., 1989, 90: 4719

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133