【1】Richards J A, Jia X. Remote sensing digital image analysis[M], 3rd Ed., Berlin, Germany: Springer-Verlag, 2006.
[2]
【2】Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine. 2002, 19(1): 44-57.
[3]
【3】Brown M, Lewis H, Gunn S. Linear spectral mixture models and support vector machine for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing. 2000, 38(5): 2346-2360.
[4]
【4】Settle J J, Drake N A. Linear mixing and estimation of ground cover proportions[J]. International Journal of Remote Sensing. 1993, 14(6): 1159-1177.
[5]
【5】Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(3): 529-545.
[6]
Geng X,Zhang B,Zhang X. et al. An unmixing method of hyperspectral imagery based on convex volume in high dimensional space[J]. Progress in Nature Science (耿修瑞,张兵,张霞,等.-种基于高维空间凸面单形体体积的高光谱图像解混算法.自然科学进展),2004,14(7):810-814.
[7]
【7】Luo W, Zhong L, Zhang B, et al. Subspace distance based spectral unmixing method for hyperspectral imagery[J]. Progress in Nature Science (罗文斐, 钟亮, 张兵, 等. 基于子空间距离的高光谱图像光谱解混算法.自然科学进展), 2008, 18(10): 1175-180.
[8]
【8】Wang L, Jia X. Integration of soft and hard classification using extended support vector machines[J]. IEEE Geoscience and Remote Sensing Letters. 2009, 6(3): 543-547.
[9]
【9】Wang L, Jia X, Zhang Y. A vovel geometric algorithm of feature selection for hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters. 2007, 4(4): 171-175.
[10]
【10】Jolliffe I T. Principal component analysis[M]. New York: Springer-Verlag, 1986.
[11]
【11】Green A, Berman M, Switzer P, et al. A transformation for ordering multispectal data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing. 1988, 26(1): 65-74.