全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于几何估计的光谱解混方法

Keywords: 高光谱,光谱解混,全约束最小二乘(FCLS),线性光谱混合模型(LSMM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

光谱解混是高光谱数据分析的重要技术之一.全约束(即非负性约束和归一化约束)最小二乘线性光谱混合模型(FCLS-LSMM)具有模型简单和物理意义明确等优点而得以广泛使用.然而,FCLS-LSMM的传统优化求解方法的迭代过程非常复杂.近年提出的几何方法为降低LSMM的求解复杂度提供了新思路,但是所获得的结果并非真正意义上的全约束最小二乘解.为此,建立了一种完全符合FCLS要求的LSMM几何求解方法,具有复杂度低和可以获得理论最优解等优点.实验表明了所提出方法的有效性.

References

[1]  【1】Richards J A, Jia X. Remote sensing digital image analysis[M], 3rd Ed., Berlin, Germany: Springer-Verlag, 2006.
[2]  【2】Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine. 2002, 19(1): 44-57.
[3]  【3】Brown M, Lewis H, Gunn S. Linear spectral mixture models and support vector machine for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing. 2000, 38(5): 2346-2360.
[4]  【4】Settle J J, Drake N A. Linear mixing and estimation of ground cover proportions[J]. International Journal of Remote Sensing. 1993, 14(6): 1159-1177.
[5]  【5】Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(3): 529-545.
[6]  Geng X,Zhang B,Zhang X. et al. An unmixing method of hyperspectral imagery based on convex volume in high dimensional space[J]. Progress in Nature Science (耿修瑞,张兵,张霞,等.-种基于高维空间凸面单形体体积的高光谱图像解混算法.自然科学进展),2004,14(7):810-814.
[7]  【7】Luo W, Zhong L, Zhang B, et al. Subspace distance based spectral unmixing method for hyperspectral imagery[J]. Progress in Nature Science (罗文斐, 钟亮, 张兵, 等. 基于子空间距离的高光谱图像光谱解混算法.自然科学进展), 2008, 18(10): 1175-180.
[8]  【8】Wang L, Jia X. Integration of soft and hard classification using extended support vector machines[J]. IEEE Geoscience and Remote Sensing Letters. 2009, 6(3): 543-547.
[9]  【9】Wang L, Jia X, Zhang Y. A vovel geometric algorithm of feature selection for hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters. 2007, 4(4): 171-175.
[10]  【10】Jolliffe I T. Principal component analysis[M]. New York: Springer-Verlag, 1986.
[11]  【11】Green A, Berman M, Switzer P, et al. A transformation for ordering multispectal data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing. 1988, 26(1): 65-74.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133