【2】Mianji A, ZHANG Ye. Robust hyperspectral classification using relevance vector machine [J]. IEEE T Geosci Remote. 2011, 49(6): 2100-2122.
[2]
【3】SHI Ji-Yong, ZOU Xiao-Bo, ZHAO Jie-Wen, et al. Selection of wavelength for strawberry NIR spectroscopy based on BIPLS combined with SAA [J]. J Infrared Millim Waves (石吉勇, 邹小波, 赵杰文, 等. BiPLS结合模拟退火算法的近红外光谱特征波长选择研究. 红外与毫米波学报), 2011, 30(5):458-462.
WANG Yan-Hua,TIAN Sheng-Feng,HUANG Hou-Kuan. Feature Weighted Support Vector Machine [J]. Journal of Electronics & Information Technology (汪延华,田盛丰,黄厚宽.特征加权支持向量机.电子与信息学报),2009,3(3):514-518.
[5]
【6】Tipping M. Sparse Bayesian learning and the relevance vector machine [J]. J Mach Learn Res. 2001, 1(3): 211-244.
[6]
【7】Kira K, Rendell A. A practical approach to feature selection [C]. In Proceedings of the 9th International Workshop on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1992, 249-256.
[7]
【8】Quinlan J. Induction of decision trees [J]. Machine Learning. 1986, 1(1): 81-106.
[8]
【1】XIA Wei, WANG Bin, ZHANG Li-Ming. Blind unmixing based on independent component analysis for hyperspectral imagery [J]. J Infrared Millim Waves (夏威, 王斌, 张立明. 基于独立分量分析的高光谱遥感图像混合像元盲分解. 红外与毫米波学报), 2011, 30(2):131-136.