全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非线性核空间映射与人工免疫网络的高光谱遥感图像分类

Keywords: 高光谱图像,人工免疫网络,抗体,非线性映射,核空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于非线性核空间映射人工免疫网络的高光谱遥感图像分类算法.根据生物免疫网络基本原理构建了人工免疫网络模型,利用非线性核函数将高光谱训练样本映射到高维空间,完善了人工免疫网络中目标样本核空间相似性分选方法,降低了人工免疫网络识别样本所需的抗体数量,提升了算法的分类精度和运算效率.为了验证算法的有效性,利用两组高光谱遥感数据将多种高光谱分类方法进行了对比实验.实验表明该算法分类精度和算法运算时间上都有较大改善,是一种分类精度更高、运算速度更快的改进型基于人工免疫网络的高光谱遥感图像分类新方法.

References

[1]  1Plaza J A,Benediktsson J, Boardman W, et al. Recent advances in techniques for hyperspectral image processing[J]. Remote Sens. Environ., 2009,113(S1): S110S122.
[2]  2WANG Y, GUO L, LIANG N. Improving the classification precision of spectral angle mapper algorithm[C]. in Proceedings of SPIE conference on Remote Sensing and GIS Data Processing and Other Applications, 2009,7498: 271276.
[3]  3Elbakary M I, Alam M S. Mine detection in multispectral imagery data using constrained energy minimization[C]. in Proceedings of SPIE conference on Optical Pattern Recognition, 2008,6977: 7179.
[4]  4Begüm Demir, Sarp Ertürk. Clustering-based extraction of border training patterns for accurate SVM classification of hyperspectral images[J]. IEEE Geosci. and Remote Sens. Lett., 2009,6(4): 840844.
[5]  5Wesam Sakla, Andrew Chan, Jim Ji, et al. An SVDD-based algorithm for target detection in hyperspectral imagery[J]. IEEE Geosci. and Remote Sens. Lett., 2011,8(2): 384388.
[6]  6Dasgupta D,Yu S, Nino F. Recent Advances in Artificial Immune Systems: Models and Applications[J]. Applied Soft Computing, 2011,11(2): 15741587.
[7]  7Hunt J E,Cooke D E. Learning using an artificial immune system[J]. Journal of Network and Computer Applications, 1996,19(2): 189212.
[8]  8Dasgupta D, Artificial immune systems and their application[M]. Berlin, Germany: Springer-Verlag, 1999.
[9]  9De Castro L N, Timmis J. Artificial immune systems: a new computational intelligence approach[M]. London, U.K.: Springer-Verlag, 2002.
[10]  10ZHONG Y F, ZHANG L P, HUANG B, et al. An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery[J]. IEEE Trans. Geosci. Remote Sens., 2006,44(2): 420431.
[11]  11ZHONG Y F, ZHANG L P, HUANG B, et al. A resource limited artificial immune system algorithm for supervised classification of multi/hyper-spectral remote sensing imagery[J]. Int. J. Remote Sens., 2007,28(7): 16651686.
[12]  12ZHONG Y F, ZHANG L P, GONG J Y, et al. A supervised artificial immune classifier for remote-sensing imagery[J]. IEEE Trans. Geosci. Remote Sens., 2007,45(12): 39573966.
[13]  13Zhong Y F, Zhang L. Unsupervised remote sensing image classification using an artificial immune network[J]. Int. J. Remote Sens., 2011,32(19): 54615483.
[14]  14ZHONG Y F, ZHONG Y, HUANG B J, et al. Dimensionality reduction based on clonal selection for hyperspectral imagery[J]. IEEE Trans. Geosci. Remote Sens., 2007,45(12): 41724186.
[15]  15ZHONG Y F, ZHANG L P. An adaptive artifcial immune network for supervised classification of multi-/hyperspectral remote sensing imagery[J]. IEEE Trans. on Geosci. and Remote Sens., 2012,50(3): 894909.
[16]  16GONG B, Im J, Mountrakis G. An artificial immune network approach to multi-sensor land use/land cover classification[J]. Remote Sens. Environ., 2011,115: 600614.
[17]  17Vapnik V N. The Nature of Statistical Learning Theory[M]. Springer Verlag, 1995.
[18]  18Jerne N K. The immune system[J]. Sci. Amer., 1973,229(1): 5160.
[19]  19Jerne N K, Towards a network theory of the immune system[J]. Annu. Immunol., 1974,125(c): 5160.
[20]  20Galeano J, Veloza A, González F. A comparative analysis of artificial immune network models[C]. in Proceedings of GECCO, 2005: 361368.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133