全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

InAs/InGaAs数字合金应变补偿量子阱激光器

Keywords: 数字合金,量子阱,分子束外延

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用气态源分子束外延在InP衬底上生长InAs/InGaAs数字合金应变补偿量子阱激光器.有源区的多量子阱结构由压应变的InAs/In0.53Ga0.47As数字合金三角形势阱和张应变的In0.43Ga0.57As势垒构成.X射线衍射测试表明赝晶生长的量子阱结构具有很高的晶格质量.在100K、130mA连续波工作模式下,激光器的峰值波长达到1.94μm,对应的阈值电流密度为2.58kA/cm2.随着温度升高,激光器的激射光谱出现独特的蓝移现象,这是由于激光器结构中相对较高的内部吸收和弱的光学限制引起最大增益函数斜率降低所导致的.

References

[1]  1Mattiello M, Niklès M, Schilt S, et al. Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers[J]. Spectrochimica Acta Part A, 2006,63: 952958.
[2]  2Jean B, Bende T. Mid-IR laser applications in medicine[J]. Topics In Applied Physics, 2003,89: 511544.
[3]  3Kim J G, Shterengas L, Martinelli R U, et al. Room-temperature 2.5μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves[J]. Applied Physics Letters, 2002,81(17): 31463148.
[4]  4Zhang Y G, Zheng Y L, Lin C, et al. Continuous wave performance and tenability of MBE grown 2.1μm InGaAsSb/AlGaAsSb MQW lasers[J]. Chinese Physics Letters, 2006,23(8): 22622265.
[5]  5O’Brien K, Sweeney S J, Adams A R, et al. Recombination processes in midinfrared InGaAsSb diode lasers emitting at 2.37μm[J]. Applied Physics Letters, 2006,89(5): 051104.
[6]  6Forouhar S, Ksebdzov A, Larsson A, et al. InGaAs/lnGaAsP/lnP Strained-layer quantum well lasers at 2μm[J]. Electronics Letters, 1992,28(15): 14311432.
[7]  7Mitsuhara M, Ogasawara M, Oishi M, et al. Metalorganic molecular-beam-epitaxy-grown In0.77Ga0.23As/InGaAs multiple quantum well lasers emitting at 2.07μm wavelength[J]. Applied Physics Letters, 1998,72(24): 31063108.
[8]  8Serries D, Peter M, Kiefer R, et al. Improved Performance of 2-μm GaInAs Strained Quantum-Well Lasers on InP by Increasing Carrier Confinement[J]. IEEE Photonics Technology Letters, 2001,13(5): 412414.
[9]  9Sato T, Mitsuhara M, Watanabe T, et al. Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1μm by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2005,87(21): 211903.
[10]  10Zheng L, Lin C H, Singer K E, et al. Strained GaInAs quantum well mid-IR emitters[J]. IEE Proc.- Optoelectron, 1997,144(5): 360364.
[11]  11Sato T, Mitsuhara M, Nunoya N, et al. 2.33-μm-Wavelength Distributed Feedback Lasers With InAs-In0.53Ga0.47As Multiple-Quantum Wells on InP Substrates[J]. IEEE Photonics Technology Letters, 2008,20(12): 10451047.
[12]  12Gu Y, Zhang Y G, Liu S, et al. Strain Compensated AlInGaAs/InGaAs/InAs Triangular Quantum Wells for Lasing Wavelength beyond 2μm[J]. Chinese Physics Letters, 2007,24 (11): 32373240.
[13]  13Mourad C, Gianardi D, Malloy K J, et al. 2μm GaInAsSb/AlGaAsSb midinfrared laser grown digitally on GaSb by modulated-molecular beam epitaxy[J]. Journal of Appiled Physics, 2000,88(10): 55435546.
[14]  14Gu Y, Zhang Y G, Wang K, et al. AlInGaAs/InGaAs/InAs strain compensated triangular quantum wells grown by gas source molecular beam epitaxy for laser applications in 2.12.4μm range[J]. Journal of Crystal Growth, 2009,311:19351938.
[15]  15Klopf F, Deubert S, Reithmaier J P, et al. Correlation between the gain profile and the temperature-induced shift in wavelength of quantum-dot lasers[J]. Applied Physics Letters, 2002,81(2): 217219.
[16]  16Ochiai M, Temkin H, Forouhar S, et al. InGaAs-InGaAsP Buried Heterostructure Lasers Operating at 2.0μm[J]. IEEE Photonics Technology Letters, 1995,7(8): 825827.
[17]  17Dong J, Ubukata A, Matsumoto K. Characteristics Dependence on Confinement Structure and Single-Mode Operation in 2-μm Compressively Strained InGaAs-InGaAsP Quantum-Well Lasers[J]. IEEE Photonics Technology Letters, 1998,10(4): 513515.
[18]  18Mitsuhara M, Ogasawara M, Oishi M, et al. 2.05-μm Wavelength InGaAs-InGaAs Distributed-Feedback Multiquantum-Well Lasers with 10-mW Output Power[J]. IEEE Photonics Technology Letters, 1999,11(1): 3335.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133