全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于Contourlet变换的多尺度纹理分割的新算法

Keywords: Contourlet变换,有限混合纹理模式,局部变化模式,纹理分割

Full-Text   Cite this paper   Add to My Lib

Abstract:

受到基于模型的纹理分析方法的启发,提出了一种新的特征提取方法-有限混合纹理模式(FiniteTextureMixturePattern,FTMP).FTMP是一个二元组的集合,可以通过聚类的方法进行计算.首先,基于Contourlet变换计算纹理的多尺度多方向变化信息;其次,对各尺度、各方向的变化信息分别进行聚类.这些聚类中心以及它们所占的比例组成的二元组的集合就构成了纹理图像的FTMP,反应了不同尺度不同方向的主要变化信息.这种纹理特征的计算方法充分利用了基于模型方法的基本思想,但却避免了复杂的参数计算.在FTMP的基础上,本文给出相应的纹理分割框架CFTMPseg,并通过定量和定性实验验证了所提算法的有效性.

References

[1]  【1】Lam B, CiesielskiV. Discovery of Human-Competitive Image Texture Feature Extraction Programs Using Genetic Programming [C].Genetic and Evolutionary Computation Conference,Seattle: 2004,2: 1114—1125.
[2]  【2】Reed T R, Hans du Buf JM. A review of recent texture segmentation and feature extraction techniques[J].Graphic Model and Image Understanding,1993,57(3): 359—372.
[3]  【3】Haralick R M, Shanmugan K, Dinstein IH. Texture features for image classification[J].IEEE Transactions on System, Man, and Cybernetics,1973,SMC-3(6): 610-621.
[4]  【4】WU Gao-Hong, ZHANG Yu-Jin, LIN Xing-Gang. Texture segmentation with wavelet transform and feature weighting [J].Journal of Image and Graphics(吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割.中国图象图形学报), 2001,6A(4): 333—337.
[5]  【5】Li Y, GongP. An efficient texture image segmentation algorithm based on the GMRF model for classification of remotely sensed imagery [J].International Journal of Remote Sensing,2005,26(22): 5149—5159.
[6]  【6】Panjwani D K, Healey G. Markov random field models for unsupervised segmentation of textured color images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995.17(10): 939—954.
[7]  【7】Liu G Y, Wang L G, XieW,etal.New texture segmentation approach based on multiresolutionMRFs with variable weighting parameters in wavelet domain [C].SPIE:MIP-PR, Wuhan, 2007,6786(6786IO): 1—8.
[8]  【8】Choi H, Baraniuk R G. Multiscale image segmentation using wavelet-domain hidden Markov models [J].IEEE Transactions on Image Processing,2001,10(9): 1309—1321.
[9]  【9】Shapiro L S G.ComputerVision[M]. PrenticeHal,l 2001.
[10]  【10】BIAN Zhao-Qing, ZHANG Xue-Gong.Pattern recognition(2n dedition)[M]. Beijing: Tinghua University Press(边肇祺,张学工.模式识别(第二版).北京:清华大学出版社), 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133