全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于可见/近红外反射光谱的稻米品种与真伪鉴别

Keywords: 可见/近红外光谱,稻米,主成分分析,BP-人工神经网络,鉴别

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用可见/近红外光谱技术对市场上5种稻米进行了鉴别.以ASDFieldSpec3地物光谱仪采集了5种稻米的光谱数据,各获取35个样本,随机分成训练集(150份)和检验集(25份),并分别采取全波段与特征波段(400~500nm、910~1400nm与1940~2300nm)两种方法建立模型进行分析.光谱经S.Golay平滑和标准归一化(SNV)处理后,以主成分分析法(PCA)降维.将降维所得的前9个主成分数据作为BP人工神经网络(BP-ANN)的输入变量,稻米品种作为输出变量,建立3层BP-ANN鉴别模型.利用25个未知样对模型进行检验,结果表明两类模型预测准确率均高达100%,其中特征波段模型比全波段模型具有更高的预测精度,说明利用可见/近红外技术结合PCA-BP神经网络分析法进行稻米品种与真伪的快速、无损鉴别是可行的,且提取特征波段是优化模型的有效方法之一.

References

[1]  【1】梁亮,杨敏华, "基于ICA与SVM算法的高光谱遥感影像分类",光谱学与光谱分析 30, 2724-2728(2010)
[2]  【2】汤旭光,宋开山,刘殿伟,王宗明,张柏,杜嘉,曾丽红,姜广甲,王远东, "基于可见/近红外反射光谱的大豆叶绿素含量估算方法比较",光谱学与光谱分析 31, 371-374(2011)
[3]  【1】CHU Xiao-Li, YUAN Hong-Fu, LU Wan-Zhen. Present sit- uation and prospect of near infrared spectrometer in China and abroad[J]. Analytical Instrumentation (褚小立, 袁洪 福, 陆婉珍.近红外光谱仪国内外现状与展望. 分析仪 器 ), 2006(2):1—10.
[4]  LIU Yan-De,LUO Ji,CHEN Xing-Miao. Analysis of solu-ble solid content in Nanfeng mandarin fruit with visible near infrared spectroscopy[J]. J. Infrared Millim. Waves (刘燕 德,罗吉,陈兴苗.可见/近红外光谱的南丰蜜桔可溶性 固形物含量定量分析.红外与毫米波学报 ),2008,27(2):119-122.
[5]  HAN Liang-Liang,MAO Pei-Sheng,WANG Xin-Guo,et al. Study on vigour test of oat seeds with near infrared re-flectance spectroscopy[J]. J. Infrared Millim. Waves (韩 亮亮,毛培胜,王新国,等.近红外光谱技术在燕麦种子.活力测定中的应用研究.红外与毫米波学报 ),2008,27(2):86-90.
[6]  【4】LIU Xiu-hua, ZHANG Xue-Gong, SUN Su-qin. Auto-dis- crimination and characteristic wave band selection of Chi- nese traditional medicine origin based on near infrared spectra[J]. China Science Bulletin (刘沭华, 张学工, 孙素琴. 中药材产地的近红外光谱自动鉴别和特征谱段选择. 科 学通报 ), 2005, 50 (4):393—398.
[7]  WU Yong-Jun,LI Wei,XIANG Bing-Ren,et al. Identifi-cation of traditional Chinese medocone Baizhi with near-in-frared spectrum[J]. Journal of Chinese Medicinal Materials (吴拥军,李伟,相秉仁,等.近红外光谱技术用于白芷类 中药的鉴定研究.中药材 ),2001,24(1):26-28.
[8]  【6】LIU Gou-Lin, CAI Jin-Na, LI Wei, et al. Near-Infrared spectroscopy technique used in the classification of the Cnid- ium Monnieri (L.) Cusson[J]. Computer and Applied Chemistry (刘国林, 蔡金娜, 李伟, 等.近红外光谱技术在 中药蛇床子分类中的应用. 计算机与应用化学 ), 2000, 17 (2):109—110.
[9]  【7】Delwiche S R, Bean M M, Miller R E, et al . Apparent am- ylose content of milled rice by near-infrared reflectance spectrophotometry[J]. Cereal Chemistry, 1995, 72 :182— 187.
[10]  【8】Bao J S, Cai Y Z, Corke H. Prediction of rice starch quality parameters by near-infrared reflectance spectroscopy[J]. Food Science, 2001, 66 :936—939.
[11]  【9】Wu J G, Shi C H, Zhang X M. Estimating the amino acid composition in the milled rice powder by near-infrared re- flectance spectroscopy[J]. Field Crops Research, 2002, 75 : 1—7.
[12]  【10】WANG Hai-Lian, WAN Xiang-Yuan, HU Pei-Song, et al. Quantitative analysis of fat content in brown rice by near infrared spectroscopy (NIRS) technique[J]. Scientia Ag- ricultura Sinica (王海莲, 万向元, 胡培松, 等.稻米脂肪 含量近红外光谱分析技术研究. 中国农业科学 ), 2005, 38 (8):1540—1546.
[13]  【11】BI Jing-Cui, ZHANG Wen-Wei, XIAO Ying-Hui, et al. Analysis for protein content in rice by near infrared reflec- tance spectroscopy (NIRS) technique[J]. Acta Agronomi- ca Sinica (毕京翠, 张文伟, 肖应辉, 等.应用近红外光谱 技术分析稻米蛋白质含量. 作物学报 ), 2006, 32 (15): 709—715.
[14]  SHAO Yong-Ni,CAO Fang,HE Yong. Discrimination years of rough rice by using visible/near infrared spectros-copy based on independent component analysis and BP neural network[J]. J. Infrared Millim. Waves (邵咏妮,曹芳,何勇.基于独立组分分析和BP神经网络的可见/ 近红外光谱稻谷年份的鉴别.红外与毫米波学报 ),2007,26(6):433-436.
[15]  【13】Haykin S. Neural network-a comprehensive foundation [M]. New York, USA: Macmillan College Publishing Company, 1994, 1—44.
[16]  【14】QI Xiao-Ming, ZHANG Lu-Da, DU Xiao-Lin, et al. Quantitative analysis using NIR by building PLS-BP model [J]. Spectroscopy and Spectral Analysis (齐小明, 张录达, 杜晓林, 等.PLS-BP法近红外光谱定量分析研究. 光谱 学与光谱分析 ), 2003, 23 (5):870—872.
[17]  【15】Workman J. Handbook of Organic Compounds: NIR, IR, Raman, and UV-VIS Spectra Featuring Polymers and Sur- factants [M]. San Diego, USA: Academic Press, 2001: 77—197.
[18]  【16】Sasic S, Ozaki Y. Short-wave near-infrared spectroscopy of biological fluids. 1In Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment[J]. Anal Chem., 2001, 73 :64—71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133