全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于可见/近红外光谱技术的黄瓜叶片SPAD值检测

Keywords: 黄瓜,可见/近红外光谱,最小二乘支持向量机,叶绿素

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了快速准确检测黄瓜叶片的SPAD值,采用可见/近红外光谱技术并结合化学计量学方法建立了黄瓜叶片SPAD值校正模型.并用不同建模方法对全波段光谱进行建模,结果表明用最小二乘支持向量机(LSSVM)建模得到的预测效果最好,其相关系数r和预测均方根误差RMSEP分别为0.9583和0.9732.通过分析黄瓜叶片的光谱反射率与SPAD值的相关系数和PLS建模回归系数,得到了531~581nm和696~716nm2个特征波段以及556nm、581nm、698nm和715nm4个特征波长,应用LSSVM分别对特征波段和特征波长建模.分析表明,采用特征波段建模,其预测相关系数r和预测均方根误差分别为0.9338和1.1370,与全波段建模结果相近,而采用特征波长建模效果稍差.特征波段建模大大减少了建模中的运算量,提高了建模速度,便于相应检测仪器的开发,所以,采用光谱特征波段建模对黄瓜叶片SPAD值的检测更为有效.

References

[1]  【1】Peng S, Garcia F V, Laza R C, et al. Adjustment for specific leaf weight improves chlorophyll meter\'s estimate of rice leaf nitrogen concentration[J]. Agronomy Journal, 1993, 85 (5):987—990.
[2]  【2】LI Xiao-Li, HU Xing-Yue, HE Yong. New approach of discrimination of varieties of juicy peach by near infrared spectra based on PCA and MDA model[J]. J. Infrared Millim. Waves (李晓丽, 胡兴越, 何勇.基于主成分和多类判别分 析的可见-近红外光谱水蜜桃品种鉴别新方法. 红外与 毫米波学报 ), 2006, 25 (6):417—420.
[3]  【3】HE Yong, LI Xiao-Li. Discriminating varieties of waxberry using near infrared spectra[J]. J. Infrared Millim. Waves (何勇, 李晓丽.用近红外光谱鉴别杨梅品种的研究. 红 外与毫米波学报 ) , 2006, 25 (3):192—194.
[4]  【4】Liu F, Zhang F, Jin Z L, et al. Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using visible/near infrared spectroscopy[J]. Analytica Chimica Acta, 2008, 629 (1-2): 56—65.
[5]  【5】XU Jing-Ping, ZHANG Bai, SONG Kai-Shan, et al. Estimation of Chlorophyll-a concentration in lake Xinmiao based on a semi-analytical model[J]. J. Infrared Millim. Waves (徐京萍, 张柏, 宋开山, 等.基于半分析模型的新庙泡叶 绿素a浓度反演研究. 红外与毫米波学报 ), 2008, 27 (3):197—201.
[6]  【6】WANG Li, HE Yong, LIU Fei, et al. Rapid detection of sugar content and pH in beer by using spectroscopy technique combined with support vector machines[J]. J. Infrared Millim. Waves (王莉, 何勇, 刘飞, 等.应用光谱技术和 支持向量机分析方法快速检测啤酒糖度和pH值. 红外 与毫米波学报 ), 2008, 27 (1):51—55.
[7]  【7】Suykens J A K, Vanderwalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9 (3):293—300.
[8]  【8】Tang H S, Xue S T, Chen R, et al. Online weighted LSSVM for hysteretic structural system identification[J]. Eng. Struct., 2006, 28 (12):1728—1735.
[9]  【9】CHU Xiao-Li, YUAN Hong-Fu, LU Wan-Zhen. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique[J]. Progress in Chemistry (褚小立, 袁洪福, 陆婉珍.近红外分析中光 谱预处理及波长选择方法进展与应用. 化学进展 ), 2004, 16 (4):528—542.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133