Takuya I, Shigeo A. Fuzzy support vector machine for pattern classification [C]. Proceeding of International Joint Conference on Neural Networks, Washington, D. C,2001, 1449-1454.
[2]
Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer, 2000,123-170.
Xu P, Chan A K. An efficient algorithm on multi-class support vector machine model selection [C]. Procee-dings of the International Joint Conference on Neural Net-works 2003. Portland, IEEE, 2003: 3229-3232.
[6]
Chapelle O, Vapnik V N, Bousquet O, et al. Choosing multiple parameters for support vector machines [J]. Machine Learning,2002,46( 1 ) :131-159.
[7]
Keerthi S S. Efficient tuning of SVM hyper parameters using radius/margin bound and iterative algorithms [J]. IEEE Trans. Neural Networks, 2002,13 (5) : 1225-1229.
[8]
Musicant D R, Kumar V, Ozgur A. Optimizing F-measure with support vector machines [C]. In the Sixteenth International Florida Artificial Intelligence Research Society Conference, St. Augustine, Florida, USA, AAAI Press,2003: 356-360.
[9]
Eitrich T, Lang B. Efficient optimization of support vector machine learning parameters for unbalanced datasets [J]. Journal of computational and applied mathematics, 2006, 196(2):425-436.
[10]
Morik K, Brockhausen P, Joachims T. Combining sta-tistical learning with a knowledge-based approach-a case study in intensive care monitoring [C]. In 16th Pro ceedings of the International Conference on Machine Learning. San Mateo, Canada: Morgan Kaufman Publishers, 1999, 268- 277.
[11]
Bo L F, Wang L, Jiao L C. Multiple parameter selection for LS-SVM using smooth leave-one-out error[J]. Lecture notes in computer science. Berlin : Springer, 2005,851-856.
[12]
李敏强 寇纪凇等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.17-75.
[13]
Ratsch G. Benchmarks data sets [ Online]. http://ida. first. fraunhofer. de/projects/bench/benchmarks.htm, 1999.