全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非均衡数据目标识别中SVM模型多参数优化选择方法

Keywords: 目标识别,非均衡数据,支持矢量机,模型优化选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了非均衡数据目标识别中SVM模型多参数优化选择方法.首先从理论上分析了SVM模型多参数选择的内涵和必要性,针对非均衡数据的分类识别,基于F测度提出了能全面反映识别性能的多参数优化选择准则.在多参数选择过程中,利用遗传算法进行模型多参数并行优化选择.提出的方法能够寻找模型多参数的全局最优解,避免陷入梯度法常出现的局部最优解情况,同时能够克服传统方法中根据经验选择SVM单参数模型时计算量太大的不足.采用国际通用的标准数据集和雷达目标HRRP数据集进行了仿真实验,实验结果表明,该方法能够得到模型多参数的全局最优值,由此确定的SVM模型分类器性能有较大提高.

References

[1]  Takuya I, Shigeo A. Fuzzy support vector machine for pattern classification [C]. Proceeding of International Joint Conference on Neural Networks, Washington, D. C,2001, 1449-1454.
[2]  Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer, 2000,123-170.
[3]  谭琨 杜培军.基于支持向量机的高光谱遥感图像分类[J].红外与毫米波学报,2008,27(2):123-128.
[4]  王莉 何勇 刘飞 等.应用光谱技术和支持向量机分析方法快速检测啤酒糖度和pH值[J].红外与毫米波学报,2008,27(1):51-55.
[5]  Xu P, Chan A K. An efficient algorithm on multi-class support vector machine model selection [C]. Procee-dings of the International Joint Conference on Neural Net-works 2003. Portland, IEEE, 2003: 3229-3232.
[6]  Chapelle O, Vapnik V N, Bousquet O, et al. Choosing multiple parameters for support vector machines [J]. Machine Learning,2002,46( 1 ) :131-159.
[7]  Keerthi S S. Efficient tuning of SVM hyper parameters using radius/margin bound and iterative algorithms [J]. IEEE Trans. Neural Networks, 2002,13 (5) : 1225-1229.
[8]  Musicant D R, Kumar V, Ozgur A. Optimizing F-measure with support vector machines [C]. In the Sixteenth International Florida Artificial Intelligence Research Society Conference, St. Augustine, Florida, USA, AAAI Press,2003: 356-360.
[9]  Eitrich T, Lang B. Efficient optimization of support vector machine learning parameters for unbalanced datasets [J]. Journal of computational and applied mathematics, 2006, 196(2):425-436.
[10]  Morik K, Brockhausen P, Joachims T. Combining sta-tistical learning with a knowledge-based approach-a case study in intensive care monitoring [C]. In 16th Pro ceedings of the International Conference on Machine Learning. San Mateo, Canada: Morgan Kaufman Publishers, 1999, 268- 277.
[11]  Bo L F, Wang L, Jiao L C. Multiple parameter selection for LS-SVM using smooth leave-one-out error[J]. Lecture notes in computer science. Berlin : Springer, 2005,851-856.
[12]  李敏强 寇纪凇等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.17-75.
[13]  Ratsch G. Benchmarks data sets [ Online]. http://ida. first. fraunhofer. de/projects/bench/benchmarks.htm, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133